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Abstract

Many real-world systems can exhibit tipping points and multiple stable states, creating the
potential for sudden and difficult to reverse transitions into a less desirable regime. The theory
of dynamical systems points to the existence of generic early warning signals that may pre-
cede these so-called critical transitions. Recently, psychologists have begun to conceptualize
mental disorders such as depression as an alternative stable state, and suggested that early
warning signals based on the phenomenon of critical slowing down might be useful for predict-
ing transitions into depression or other psychiatric disorders. Harnessing the potential of early
warning signals requires us to understand their limitations as well as the factors influencing
their performance in practice. In this paper, we (a) review limitations of early warning signals
based on critical slowing down to better understand when they can and cannot occur, and
(b) study the conditions under which early warning signals may anticipate critical transitions
in online-monitoring settings by simulating from a bistable dynamical system, varying crucial
features such as sampling frequency, noise intensity, and speed of approaching the tipping
point. We find that, in sharp contrast to their reputation of being generic or model-agnostic,
whether early warning signals occur or not strongly depends on the specifics of the system.
We also find that they are very sensitive to noise, potentially limiting their utility in prac-
tical applications. We discuss the implications of our findings and provide suggestions and
recommendations for future research.

1 Introduction
Inspired by a dynamical systems perspective, researchers in psychology and psychiatry have begun
to conceptualize mental disorders such as depression as an alternative stable state (e.g., Borsboom,
2017; Cramer et al., 2016; Hofmann et al., 2016; Kalisch et al., 2019), noting that transitions from
a “healthy” into an “unhealthy” stable state may not always be smooth, but can be sudden (e.g.,
Hayes & Andrews, 2020; Hayes et al., 2007; Helmich et al., 2020; Hosenfeld et al., 2015; Nelson
et al., 2017). Such sudden transitions are not only notoriously hard to predict, but can also be
hard to reverse. This makes tools that can help us anticipate, and avert, these so-called critical
transitions highly desirable.

There exist indicators — known as early warning signals — that, at least for some systems, can
occur prior to such critical transitions. The most widely used early warning signals are based on
critical slowing down, the phenomenon that some systems return more slowly to their stable state
after an external perturbation (Scheffer et al., 2009; Wissel, 1984). Early warning signals based on
critical slowing down have been observed prior to transitions in a wide range of systems, for example
preceding algal bloom in lakes (Wilkinson et al., 2018), preceding population extinction (Dai et al.,
2013; Dai et al., 2012), preceding transitions in the climate (Dakos et al., 2008; Lenton, 2011),
and preceding the resurgence of infectious diseases (Harris et al., 2020). This has inspired work in
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psychology and psychiatry, where early warning signals have been investigated in the context of
major depressive disorder (Kuranova et al., 2020; Schreuder et al., 2020; van de Leemput et al.,
2014; Wichers et al., 2016; Wichers et al., 2020), bipolar disorder (Bayani et al., 2017; Curtiss
et al., 2019), and sudden gains and losses in psychotherapy (Olthof et al., 2019). Such work is
promising and exciting, and several researchers have suggested that early warning signals could be
very useful for personalized early intervention in the context of psychiatric disorders (e.g., Hayes
et al., 2019; Hofmann et al., 2016; Nelson et al., 2017; Olthof et al., 2019; van de Leemput et al.,
2014; Wichers et al., 2019; Wichers et al., 2020).

While early warning signals based on critical slowing down have been suggested as a tool
to anticipate critical transitions in a wide range of systems, over the last decade or so, their
limitations have become clearer. These limitations help us understand when we can expect early
warning signals to occur or not to occur, and are therefore important for practical applications.
After explaining the theory behind critical slowing down in Section 2, we provide an overview of
the limitations of early warning signal based on critical slowing down in Section 3. Similarly, while
early warning signals have been suggested as a tool to monitor in real-time whether patients are
about to transition into an unhealthy state, the conditions under which such an approach is feasible
in practice remain to be evaluated. In Section 4, we use a simulation study to investigate how
factors such as sampling frequency, noise intensity, and the time it takes the system to approach the
tipping point may influence the performance of early warning signals in such real-time monitoring
situations. Our theoretical and practical investigations have a number of implications for the
study and application of early warning signals in psychology and psychiatry. We discuss these
implications and provide recommendations for future research in Section 5.

2 Theory of Critical Slowing Down
In the following two sections, we will explain the theory behind critical slowing down using a
unidimensional and a multidimensional system as an example. For an extended introduction, we
refer the reader to Dablander (2020).

2.1 Unidimensional Systems
We illustrate the theory of critical slowing down using a simple example: modeling the growth
of a population of prey under different predation rates (e.g., May, 1977). A key feature of this
and many other models is that they can exhibit multiple equilibria, corresponding in our case
to multiple population sizes to which the prey can converge over time, given a particular initial
population size and a particular value for the predation rate. Such equilibria can either be stable
or unstable, and we refer to these equilibria also as stable or unstable states, respectively. If an
equilibrium is stable, the system returns to it after small perturbations. For example, after adding
a few more animals to the population of prey, others die due to the limited amount of resources,
resulting in a population size that remains constant. If an equilibrium is unstable, on the other
hand, the system does not return to the equilibrium after a small perturbation. For example, a
prey population of size zero (x = 0) is unstable because adding animals of the opposite sex leads
to offspring and thus a growing population. The central panel in Figure 1 shows stable (solid lines)
and unstable (dashed lines) equilibria, which we denote as x?, for different predation rates. The
grey arrows in the panel illustrate that stable equilibria are attracting, while unstable equilibria
are repelling. In the context of our simple example, low predation rates may correspond to a
small population of predators, while high predation rates may correspond to a large population of
predators. The central panel in Figure 1 reflects the intuition that the stable population of prey
should be larger when the predation rate is low compared to when the predation rate is high. For
a particular range of predation rates between these two extremes — indicated by the grey shaded
region — the system exhibits two stable population sizes; depending on the initial prey population
size, the system either converges to one or the other stable state. A necessary condition for multiple
stable states and critical transitions are strong reinforcing feedback loops (Kéfi et al., 2016). In
our example, individual prey can help each other fend off predators more effectively after reaching
a certain population size. This leads to stronger population growth, which in turn boosts their
cooperative defense strategy, which leads to stronger population growth etc. Below this population
threshold, which is given by the size of the unstable equilibrium, the defense strategy seizes to be
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effective, and the prey population collapses. Such a positive relationship between population size
and fitness is known as an Allee effect (e.g., Kramer et al., 2009; Stephens & Sutherland, 1999).
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Figure 1: The central panel illustrates the change in stable and hence attracting (solid lines) and
unstable and hence repelling (dashed lines) equilibria as the predation rate changes. The top left
and right panels show the stability landscape of the system for different predation rates, while the
bottom left and right panels show how quickly the system recovers after an intervention, as well
as the autocorrelation of the state variable.

Some systems can abruptly change their stable equilibrium as an underlying parameter changes.
We show this here for our system, which changes its stable population size as the predation rate
changes. The central panel in Figure 1 illustrates this: as we move on the x-axis from a small
predation rate to a larger predation rate, we find that around a value of 2.60 — indicated by a
black dot — the stable equilibrium x? = 4.90 vanishes (the solid black line above ends) and the
system changes to its other stable equilibrium x? = 0.44 (indicated by the black line below). The
population of prey is thus driven close to extinction by this miniscule change in the predation rate.
A situation in which a small change in an underlying parameter can result in a qualitative change in
the stability landscape is known as a bifurcation; our specific case of a stable equilibrium vanishing
is known as a saddle-node bifurcation (Strogatz, 2015). Once the stable equilibrium vanishes, the
system moves towards its new stable equilibrium, as the grey arrows in Figure 3 indicate. This is
frequently referred to as a critical transition (e.g., Scheffer, 2009), and the bifurcation point as a
tipping point (e.g., Milkoreit et al., 2018; van Nes et al., 2016). How long it takes the system to
reach its other stable equilibrium — and thus how sudden the change appears to us — depends on
the system. For example, after crossing a tipping point a population of yeast can collapse within
days (Dai et al., 2012), while the total melting of the Greenland ice sheet would take millennia
(Robinson et al., 2012). As the panel illustrates, however, a defining feature of a critical transition
is that it is hard to reverse: it is not enough to reduce the predation rate slightly; instead, it has
to be reduced to 1.70, at which point another saddle-node bifurcation occurs, leading to a sudden
increase in population size.

Crossing such tipping points can have catastrophic effects in real-world systems, and indicators
that could help us understand whether the system is close to a tipping point would be of great
practical importance. The resilience of a system is defined as the magnitude of the perturbation
the system can withstand without tipping into another equilibrium (Holling, 1973; Scheffer et al.,
2015). The top panels in Figure 1 contrast a system that is in a stable state with higher resilience
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(left) with one that is in a stable state with lower resilience (right) by means of so-called “ball-
in-a-cup” diagrams. Such diagrams visualize the potential of a system — colloquially its stability
landscape — and a ball (e.g., Strogatz, 2015, pp. 30). The ball represents the state of the system,
which moves towards a stable equilibrium with a speed proportional to the local steepness of the
landscape. The panel on the top left shows that a perturbation would need to be quite strong to
push the high resilient system from its stable state x? = 7.52 to the other stable state at x? = 0.78.
In contrast, the “ball-in-a-cup” diagram on the top right illustrates that a smaller push is required
for the low resilient system to go from x? = 6.26 to x? = 0.49. In practice, the less resilient system
is closer to a tipping point and may need to be nurtured into a more resilient state. Unless we have
a realistic mathematical model through which we can assess the effect of perturbations of varying
strength, using resilience as an indicator of how likely a critical transition is to occur is difficult.
This is because, using our example as illustration, assessing how many animals we could kill until
the population collapses by actually killing them would defeat the purpose of preventing such a
collapse in the first place.

The stability of a system provides a more practical way to assess whether the system is close to
a tipping point. Stability is defined as the time the system takes to return to its equilibrium after
a small external perturbation (e.g., van Nes & Scheffer, 2007). From the stability landscapes in
Figure 1 we see that the more resilient system would return more quickly to its equilibrium state
after a small external perturbation than the less resilient system — this is because of the steeper
slope of the landscape around the stable equilibrium. The bottom left panels in Figure 1 illustrate
this. They show a simulated time-series subject to noise for a system with higher resilience (left)
and lower resilience (right). We intervene in the system at time point t = 30 and half the prey
population. As can be seen, the more resilient system recovers swiftly (at about t = 35 the full
population size is established again), while the system with lower resilience takes longer to recover.
The phenomenon that as a system becomes less resilient — that is, as it comes closer to the tipping
point — its return to equilibrium is slower is known as critical slowing down (Wissel, 1984).

To quantify the resilience of a system using the concept of stability requires that the system
goes out of equilibrium. One way to achieve this is by way of intervention, yet interventions are
not always possible or practical in real-world systems. Fortunately, real systems are always subject
to countless small external perturbations. We can use these external perturbations as a way to
quantify the resilience of a system and find signatures of critical slowing down in empirical time-
series. The bottom right panels in Figure 1 illustrate this as an increase in autocorrelation for the
system with lower resilience: critical slowing down leads to system states becoming more similar
to each other, which is reflected as increased autocorrelation. Similarly, because the system with
lower resilience returns more slowly to equilibrium, external perturbations can accumulate and
push the system further away from equilibrium, resulting in an increase in variance that can be
seen in the bottom panels in Figure 1 before the intervention takes place. Appendix A gives a
rigorous mathematical treatment of critical slowing down in unidimensional systems.

2.2 Multidimensional Systems
In contrast to the example above, most real-world systems consist of multiple variables. Mental
disorders such as depression, for example, are comprised of various variables related to, among other
things, sleep, emotion, and cognition (e.g., Chevance et al., 2020). The dynamics of emotions are
viewed as playing a central role in the development of psychopathology (e.g., Trull et al., 2015;
Wichers et al., 2015), and we focus on them here. In particular, emotions can have a positive
valence, such as cheerful and content, or a negative valence, such as anxious and sad, and we might
believe that there exists a tipping point in the mood system such that, when crossed, a person
abruptly moves from a stable positive mood state into a stable negative mood state. To formalize
such a simplified mood system, we use a four-dimensional version of the Generalized Lotka-Volterra
model (e.g., van Nes & Scheffer, 2004) as our toy model:

dxi
dt

= 1 + ri(t)xi +

4∑
j=1

Cijxixj + εi , (1)

where we interpret the variables x1 and x2 as cheerful and content, and the variables x3 and x4
as anxious and sad (see also Haslbeck & Ryan, 2021; van de Leemput et al., 2014). Equation
(1) describes what the rate of change of each variable xi depends on. εi ∼ N (0, σε) is uncorre-
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lated Gaussian noise, and the constant term 1 ensures that the variables are positive with high
probability.1 The matrix C specifies the coupling between the variables. We set

C =


−0.2 0.04 −0.2 −0.2
0.04 −0.2 −0.2 −0.2
−0.2 −0.2 −0.2 0.04
−0.2 −0.2 0.04 −0.2

 , (2)

which specifies that the positive mood variables x1 and x2 reinforce each other (C12 = C21 = 0.04)
while they suppress the negative mood variables x3 and x4 (C13 = C14 = C23 = C24 = −0.2), and
vice versa. The diagonal of C encodes how strongly x2i influences the rate of change of xi. All
diagonal values are negative (C11 = C22 = C33 = C44 = −0.2), implying a self-dampening effect for
each mood variable. The value of ri(t) encodes how strongly xi influences its rate of change. We
set r1 = r2 = 1 so that the self-reinforcing effect of the positive emotions is the same and constant
across time, while we set r(t) ≡ r3(t) = r4(t) to allow the self-reinforcing effect to change over time
for the negative emotions x3 and x4. A lower value for r(t) implies that external perturbations
that increase negative emotions are absorbed quickly, while a higher value for r(t) implies that
such external perturbations have a more durable effect due to the larger self-reinforcing effect.

Figure 2 shows that r is the key parameter influencing which mood states are stable equilibria.
In particular, the left panel shows that, for small values of r, the system is in a state where positive
emotions are high (solid red line) and negative emotions are low (solid blue line). This makes sense,
because for a small r the self-reinforcing effect of negative emotions is low. As this self-reinforcing
effect becomes stronger, however, the system reaches a tipping point at r = 1.20 — it abruptly
changes into a state in which positive emotions are low and negative emotions are high. The right
panel shows this critical transition: an example (scaled) time-series is simulated from the model
where r(t) changes (solid black line) starting at day 50. On day 70, the system reaches r = 1.20
and abruptly changes from a dominant positive mood state into a dominant negative mood state.
Similar to the example in Section 2.1, this change is again hard to reverse: it is not enough to
reduce r slightly; instead, it has to be reduced to r = 0.90, at which point another saddle-node
bifurcation occurs, leading to a sudden change from a dominant negative mood state to a dominant
positive mood state.

Bifurcation Diagram
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Figure 2: Left: The bifurcation diagram shows how the stable states of the system change as a
function of the self-reinforcing effect r of the negative emotions. Right: Time-evolution of r and
scaled time-series of the Generalized Lotka-Volterra model given in Equation (1) with σε = 4.

As in the unidimensional model described in the previous section, critical slowing down also
occurs in this multidimensional model, as illustrated in Figure 3. The top panels show time-series
data from a system with higher resilience (left) and the autocorrelation of two of its variables
(middle), while the bottom panels show the same plots for a system with lower resilience, resulting

1The constant term also influences the extent to which the system can exhibit bistability (as highlighted as the
grey shaded region in Figure 2); larger values correspond to smaller sets of r values for which the system exhibits
two stable equilibria.
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in higher variance (left) and higher autocorrelation (middle). In addition to these univariate
indicators, a number of multivariate indicators that are sensitive to critical slowing down have
been proposed (e.g., Dakos et al., 2010; Kéfi et al., 2014). One such multivariate indicator are the
cross-correlations between state variables, which are more pronounced in a system that is close to
a tipping point compared to a system that is far away from the tipping point, as illustrated in the
right panels in Figure 3. Appendix B gives a rigorous mathematical treatment of critical slowing
down in multidimensional systems.
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Figure 3: Top: Shows simulated time-series data from our simplified mood model in a state of
higher resilience (r = 0.50, left), the autocorrelation of two of its state variables (middle), and
the cross-correlation of all its state variables (right). Bottom: Shows this for a system with lower
resilience (r = 1.18). Lower resilience is associated with an increase in variance, autocorrelation,
and cross-correlations.

To sum up, critical slowing down is an extremely powerful idea. It suggests that, regardless
of the underlying dynamics, as long as the system exhibits multiple stable equilibria and critical
transitions between them, we may observe signatures of critical slowing down in time-series data
that occcur prior to such critical transitions (e.g., Clements & Ozgul, 2018; Scheffer et al., 2012),
or allow us to rank the resilience of systems (e.g., Gijzel et al., 2019; Scheffer et al., 2018). Such
signatures are known as early warning signals, which for the reasons above are sometimes called
“generic” in the sense that all we need is time-series data on which to compute simple statistics
such as autocorrelation, variance, or cross-correlations. Over the last decade or so, however, the
generality of early warning signals based on critical slowing down has been reassessed, and their
limitations have become clearer. These limitations have important implications for whether, and
when, early warning signals can be useful in practice, and we turn to them in the next section.

3 Limitations of Early Warning Signals based on Critical
Slowing Down

In this section, we discuss limitations of early warning signals based on critical slowing down. The
key observation is that early warning signals can occur in systems that do not exhibit critical
transitions, and that it can fail to occur in systems that do; Table 1 provides an overview. We
discuss these two issues in the next two sections.

3.1 Early Warning Signals without Critical Transitions
The systems we have studied in Section 2 exhibit a saddle-node bifurcation as a key underlying
parameter — often called driver — changes. This type of bifurcation is the most extensively
studied case in which critical slowing down precedes a critical transition (Boettiger et al., 2013;
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EWS without Critical Transitions Critical Transitions without EWS

EWS can occur prior to smooth transitions be-
tween stable states (Drake & Griffen, 2010; Kéfi
et al., 2013).

Strong external perturbations can lead to transi-
tions without EWS (Ditlevsen & Johnsen, 2010;
van Nes et al., 2016).

EWS can occur when there is no transition (e.g.,
Wagner & Eisenman, 2015).

EWS may not occur prior to critical transitions
in systems with non-smooth potentials (Hastings
& Wysham, 2010).

Not all variables in a system generally express
EWS equally strongly or at all (Boerlijst et al.,
2013; Patterson et al., 2021).

EWS may not occur under correlated or extrinsic
noise (Dakos et al., 2012b; O’Regan & Burton,
2018; Qin & Tang, 2018).

Table 1: Summarizes results showing that early warning signals (EWS) can occur prior to non-
critical transitions (left) or can fail to occur prior to critical transitions (right).

Scheffer et al., 2009). As shown in Figure 3, as the system approaches the saddle-node bifurcation it
takes longer to recover from small perturbations, resulting in critical slowing down which gives rise
to early warning signals in the form of increased autocorrelation, variance, and cross-correlations.
This is in contrast to the state variables, which barely change as the system approaches the tipping
point, as illustrated in Figure 2. Without early warning indicators, it would be difficult to see the
critical transition coming. This makes such indicators potentially very useful in practice, and they
have been suggested as a tool to anticipate, for example, the sudden onset of depression (e.g.,
van de Leemput et al., 2014; Wichers et al., 2020).

Critical slowing down is not specific to the saddle-node bifurcation with its implied critical
transition, however. Instead, critical slowing down occurs prior to all so-called zero-eigenvalue
bifurcations (Kéfi et al., 2013; Strogatz, 2015). The transcritical bifurcation is one such type of
bifurcation: in contrast to the saddle-node bifurcation, it results in a smooth transition between
stable equilibria, yet shows critical slowing down (Chisholm & Filotas, 2009; Drake & Griffen, 2010;
Kéfi et al., 2013). While exciting recent work tries to identify the type of bifurcation (Bury et al.,
2020; Bury et al., 2021), increases in commonly used early warning indicators do not necessarily
imply an impending critical transition. In fact, Kéfi et al. (2013) showed that the system need not
even experience a bifurcation at all, but that a smooth, nonlinear change in the stable equilibrium
due to a change in an underlying parameter can suffice to elicit critical slowing down.

An increase in early warning indicators such as autocorrelation and variance can also occur due
to a number of other factors. For example, the variance of the system might simply increase due
to stronger noise or an increase in the variance in key underlying drivers (see for example Boulton
et al., 2013). When this happens, we might be misled into thinking that a critical transition is
impending, when in fact it is not. For this reason, it is advised to assess if multiple indicators, such
as variance and autocorrelation, increase instead of relying on a single indicator (e.g., Ditlevsen
& Johnsen, 2010). However, increases in multiple indicators without critical transitions are still
possible, and can thus lead to false alarms (e.g., Boettiger & Hastings, 2012a; Wagner & Eisenman,
2015).

3.2 Critical Transitions without Early Warning Signals
While signalling non-critical transitions or falsely signalling critical transitions can be problematic,
failing to signal critical transitions might be catastrophic. An obvious case in which a system
experiences a critical transition without critical slowing down is the following: as long as the system
exhibits two stable equilibria, there is always the possibility that a strong external perturbation
pushes the system from one stable equilibrium into another, independently of any change in the
system dynamics (Boettiger & Hastings, 2012a; Ditlevsen & Johnsen, 2010; van Nes et al., 2016).
In the context of our mood model, the sudden death of a close relative may push a person from
a positive state into a negative state almost immediately and without warning. As shown in
Figure 2, the closer we are to the bifurcation point, the smaller such a perturbation — for example
corresponding to a less severe negative life event in our context — has to be to push the system into
the other stable equilibrium. Since real-world systems are always subject to external perturbations
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that may tip the system into an alternative stable equilibrium at any time, one cannot exactly
predict the occurrence of critical transitions. While this should not come as a surprise, it deserves
repetition; it is the reason why careful authors speak of anticipating instead of predicting critical
transitions (e.g., Scheffer et al., 2012).

There are more subtle cases in which critical transitions can occur without critical slowing down,
however. As explained in Section 2, critical slowing down assumes that the system is in equilibrium,
with small noise constantly perturbing it after which it may recover. Crucially, it assumes that
factors influencing the system change slowly compared to the rate with which the system returns to
its equilibrium. This means that the system can respond to small external perturbations in time,
that is, return (close) to the stable state before the environment changes — the system “tracks”
the continuously changing stable state (Perryman, 2015). This need not be the case, however. If
instead the environment changes so rapidly that the system cannot adjust back to the stable state
in time, it can undergo rate-induced tipping (Ashwin et al., 2012; Scheffer et al., 2008; Siteur et al.,
2016; van der Bolt & van Nes, 2021). For example, a critical factor for the stability of certain
systems in future climate may not only be the magnitude, but also the rate of global warming
(e.g., Lohmann & Ditlevsen, 2021; Luke & Cox, 2011). In the context of our mood example,
we may find that a person stays in a positive mood state as stress increases — while staying
below a critical level — slowly over days. This increase in stress is slow enough so that the positive
emotions can balance out a rise in negative emotions. However, should stress increase within hours,
it may be that positive emotions are too slow to balance out a rise in negative emotions, and the
person transitions into a negative mood state, even though the stress level always stayed below the
critical level. In this case, it is not the absolute level of stress that is critical, but rather its rate
of change. In contrast to bifurcation-induced critical transitions, the stability landscape does not
change before rate-induced transitions; the concept of resilience as outlined in Section 2 may thus
be inadequate for systems where rate-induced transitions are possible (Siteur et al., 2016). As a
corollary, rate-induced transitions therefore need not be anticipated by conventional early warning
signals (Boulton et al. (2013); Ashwin et al. (2012); but see Ritchie and Sieber (2016); Siteur et al.
(2016)).

Another subtlety that has important ramifications for early warning signals based on critical
slowing down concerns the relationship between resilience and stability. As we have seen in Section
2.1, critical slowing down is a result of a decrease in a system’s stability as it approaches a tipping
point. In our example, the resilience and stability of the system are positively correlated: as
stability decreased with increasing predation rate, so did resilience. While our simple predator-
prey system is subject to only one slowly changing driver — predation rate — real-world systems
are subject to multiple drivers. Driving a yeast population to collapse, Dai et al. (2015) showed that
the relation between stability and resilience can change depending on the driver (see their insightful
Figure 4), and demonstrated experimentally that the performance of early warning signals based on
critical slowing down markedly decreases when stability decreases more slowly relative to resilience.
Crucially, they also found that when the system is subject to two drivers that change in opposite
directions, stability and resilience can become negatively correlated: resilience can decrease while
stability actually increases as the tipping point is approached (see Dai et al., 2015, Figure 5). This
results in decreasing early warning indicators, and may thus incorrectly signal that no tipping point
lies ahead. In the context of our psychological example, stress may increase, moving the system
towards the tipping point, but social support may increase as well, moving the system away from
the tipping point, potentially resulting in a negative correlation between stability and resilience.
This important nuance in the relationship between stability and resilience points to the need of
understanding the underlying drivers of a system and their interactions.

Early warning signals based on critical slowing down may fail to anticipate critical transitions
also for another reason. Critical slowing down requires that the potential — frequently called
the stability landscape — of a dynamical system not only changes, but changes smoothly as an
underlying driver changes (Hastings & Wysham, 2010). Figure 1 shows such stability landscapes
for a system with higher and a system with lower resilience; the assumption of smoothness means
that, as we vary the predation rate, there should not be any “breaks” in the stability landscape.
Yet non-smooth potentials are possible; they occur, for example, in chaotic systems, that is, in
systems whose time-evolution depends sensitively on initial conditions. Hastings and Wysham
(2010) argued that chaotic systems are only a small subset of systems that have non-smooth
potentials. They illustrated the lack of critical slowing down on three models that likely do not
have smooth potentials, but that undergo critical transitions. They argued that a large class of
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real-world systems might have non-smooth potentials, and that one therefore cannot assume a
priori that critical slowing down precedes critical transitions in real-world systems. Hastings and
Wysham (2010) stressed the importance of building mathematical models of the phenomenon one
is interested in, as this can suggest whether the system can be adequately described by a model
exhibiting a smooth or a non-smooth potential. Titus and Watson (2020) echoed the call by
Hastings and Wysham (2010) for the need of modeling after showing that the autocorrelation and
variance can decrease prior to transitions, a phenomenon they term critical speeding up.

Even if we assume that potentials are smooth and critical slowing down exists, not every variable
in a multidimensional system might express early warning signals such as an increase in autocor-
relation or variance equally strongly — or at all. Boerlijst et al. (2013) studied a three-species
model with juvenile prey, adult prey, and a predator that only attacks adult prey. They varied
the internal parameter controlling the predator’s death rate such that the predator population
undergoes a saddle-node bifurcation and becomes extinct. Strikingly, they did not observe critical
slowing down in either the predator or the adult prey population. Instead, critical slowing down
could only be observed in the juvenile population, which is arguably the most irrelevant variable,
since the predator preys solely on adults.2 Motivated by this finding, Patterson et al. (2021) pro-
vided a rigorous mathematical analysis of the conditions under which early warning signals are
expected to occur. Importantly, they found that the expected strength of early warning signals
decreases with the square of the total number of variables comprising the system (not all of which
are usually observed). These theoretical insights have important practical implications. Returning
to our mood example, in the real world we might observe early warning signals most strongly in
the variable “cheerful”, but barely or not at all in the other three variables, all four of which are
just a small part of the larger mood system. Without a good understanding of the system that
can inform which variables one should monitor, early warning signals will generally be harder to
observe in complex, high-dimensional systems.

Another important limitation of critical slowing down is that its occurrence depends on the type
of noise. For example, while Boerlijst et al. (2013) observed critical slowing down in the juvenile
prey for uncorrelated Gaussian noise added to all three populations, critical slowing down is not
observed under noise that is fully correlated. Correlated noise is common in real-world systems,
as external perturbations generally do not affect system components independently. For example,
suppose it is shown that a model for panic attacks based on a reinforcing feedback loop between
autonomic arousal and perceived threat (Robinaugh et al., 2019) exhibits critical transitions and
critical slowing down. In practice, however, the system the model is describing is always subject
to noise, and because the system is much more complicated than the model — for example, the
model does not include all relevant variables — this noise will be correlated. Since correlated noise
can markedly suppress early warning signals, this may have considerable practical implications.

Early warning signals are usually derived under the assumption of additive white noise, neglect-
ing the underlying noise mechanism. Taking the noise mechanism into account, one can distinguish
between extrinsic and intrinsic noise (e.g. Boettiger, 2018). Extrinsic noise encodes changes in the
environment; it is thus shared by all system components, inducing correlations between them (Qin
& Tang, 2018). In our simple model illustrated in Figure 1, extrinsic noise would correspond to
perturbations of the predation rate. Intrinsic noise, on the other hand, is due to randomness in the
system itself, for example due to stochastic births and deaths in the population (O’Regan & Bur-
ton, 2018). Qin and Tang (2018) found that early warning indicators can fail to anticipate critical
transitions under extrinsic noise and can also lead to false alarms; notably, the situation becomes
worse as the size of the system increases (see also Patterson et al., 2021). O’Regan and Burton
(2018) further showed that, while autocorrelation is robust to different noise forms, the variance is
not — it can increase, decrease, or stay constant before a saddle-node bifurcation, depending on
how the system dynamics interact with the dynamics of the noise (see also Dakos et al., 2012b).

The limitations above strongly put into question the notion that early warning signals can be
used as a generic tool to anticipate critical transitions in a large class of systems. Instead, we
need to build up a sufficient understanding of the system under study in order to assess whether
and under what conditions early warning signals are likely to anticipate critical transitions —
assuming that critical transitions can in fact occur in the system under study. Yet even if we had
a sufficient theoretical understanding that makes the occurrence of early warning signals before
critical transitions likely, it is currently unclear how well early warning signals would perform in
online monitoring settings in anticipating such transitions. To assess this, we turn to a simulation

2We have replicated their results and extended them to multivariate indicators in Appendix C.
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study in the next section.

4 Investigating the Performance of Early Warning Signals
The utility of early warning signals does not only depend on the theoretical considerations outlined
in the previous section. After all, detecting a rise in indicators such as autocorrelation or variance
is also a statistical challenge. It is therefore important to understand what factors may influence
the performance of early warning signals in practice. We address this issue by simulating from
the Generalized Lotka-Volterra which we introduced in Section 2.2 as a simplified model for mood.
While bistable systems of this type have become popular in theoretical psychology (e.g., Borsboom,
2017; Cramer et al., 2016; Nelson et al., 2017), real psychological systems are more complicated
and give rise to much messier data. However, this simplified setup allows us to study the purely
statistical challenges of applying early warning signals in practice in a straightforward manner.
Previous simulation studies assumed that the system has transitioned and that the time point
of the transition is known (e.g., Boettiger & Hastings, 2012b; Clements et al., 2015; Peretti &
Munch, 2012). This situation is less interesting in practical applications, however, where we wish
to assess whether early warning indicators signal a critical transition before it actually occurs. In
our simulation study, we mimic an online monitoring setting where data comes in sequentially and
early warning indicators are computed with every new data point. Our goal is to understand the
conditions under which such an approach is feasible in practice.

4.1 Simulation Setup
We set up our simulation study to shed light on the following questions. First, what is the
respective influence of increasing noise and decreasing sampling frequency on the performance
of early warning signals? Since detecting a rise in indicators is a statistical problem, increasing
noise and decreasing sampling frequency likely have a detrimental effect, but the extent of their
respective negative influence is unclear. Second, how does the extent of baseline data and the length
of the transition period influence the performance of early warning signals? Since we mimic an
online monitoring setting in which we sequentially collect data and do not assume knowledge about
the occurrence of the tipping point, we need to test a potential rise in indicator against the indicator
at baseline. This requires a good estimate of the indicator both at baseline as well as during the
transition period. We therefore expect that more baseline data as well as a longer transitioning
period result in an increased performance of early warning indicators. Finally, what early warning
indicators best anticipate a transition for our system? While there are a large number of early
warning indicators — with more and more being developed — we assessed the performance of the
following widely used early warning indicators: autocorrelation, variance, skewness, and kurtosis
as univariate indicators (Carpenter & Brock, 2006; Guttal & Jayaprakash, 2008; Scheffer, 2009);
the average absolute value of all cross-correlations (Dakos et al., 2010), the largest eigenvalue of
the covariance matrix (Chen et al., 2019), spatial variance, spatial skewness, and spatial kurtosis
as multivariate indicators (Guttal & Jayaprakash, 2009; Kéfi et al., 2014); see Appendix D for
mathematical definitions. Note that we estimated all univariate indicators on x1, and that using
any other variable does not markedly change the results (a fact that is specific to our system).

We sampled the system using Euler’s method with a time step of ∆t = 0.01. Table 2 gives an
overview of the early warning indicators we used and the parameters we varied in the simulation.
We have categorized the parameters into uncontrollable parameters that, in real applications, are
usually outside of the researcher’s control and controllable parameters that are more likely to be
under the researcher’s control. For example, while the extent of unwanted variation (i.e., noise)
and the time it takes the system to approach the critical transition can (usually) not be influenced
by the researcher, design choices regarding the extent of the baseline or the sampling frequency as
well as statistical choices such as the rolling window size are more likely to be under the researcher’s
control.

We studied different noise intensities σε ∈ [4, 6, 8, 10], which in practice may partly arise due to
different degrees of measurement error. The extent of the observed noise depends on σε and ∆t,
and so cannot be taken in absolute terms to reflect some real-world process, but must be interpreted
in a relative manner.3 In experience sampling studies common to psychopathology research, the

3To give more intuition for the noise intensities, note that the empirical standard deviation σx1 of x1 at r = 0.60
corresponding to the levels of σε are [0.34, 0.51, 0.69, 0.87]. Transforming these into signal-to-noise ratios µx1/σx1

—
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Early Warning Indicator Source
Autocorrelation and Variance Scheffer et al. (2009)
Skewness and Kurtosis Guttal and Jayaprakash (2008)
Cross-correlation Dakos et al. (2010)
Dominant eigenvalue of covariance matrix Chen et al. (2019)
Spatial-Variance, Spatial-Kurtosis, Kéfi et al. (2014)
and Spatial-Skewness
Parameter Values
Uncontrollable
Noise intensity σε 4, 6, 8, 10
Transition Period 10, 25, 50 days
Controllable
Sampling Frequency 1x, 5x, 10x per day
Baseline 25, 50, 100 days
Rolling Window Size 10, 25, 50 days

Table 2: Shows the early warning indicators we used and the parameters we varied in the simulation
study.

window within which we can query a person ranges from 8am to 10pm, that is, there are 15 hours
within which we can sample the system. We studied the behaviour of early warning indicators
under sampling frequencies of every 90, 180, and 900 minutes. These sampling frequencies, which
are standard in experience sampling studies, yielded 10, 5, and 1 observations per day, respectively.

We say that the system is at baseline when r = 0.60, and we varied the length of the baseline
to be 25, 50, or 100 days. We implemented different transition periods by linearly changing the
stress parameter r from r = 0.60 at baseline to r = 1.20 with varying steepness. We varied this
transition period in the simulation to be 10, 25, and 50 days. For a transition period of 10 days
and sampling frequencies of 1, 5, or 10 times per day this resulted in 10, 50, or 100 observations,
respectively; for a transition period of 25 days we would collect 25, 125, or 250 observations; and for
a transition period of 50 days this would yield 50, 250, and 500 observations, respectively. Figure 4
illustrates three examples with different sampling frequency and noise intensity. From left to right,
the simulated time-series are generated with decreasing noise intensity and decreasing sampling
frequency. In the simulation, we studied all possible combinations of all parameters. Note that
with increasing noise, the chances of transitioning before or after the theoretical bifurcation point
at r = 1.20 increase.
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Figure 4: Three example settings in our simulation study. The bifurcation parameter r increases
linearly after a baseline period. From left to right, the (scaled) simulated time-series are shown
under decreasing noise intensity and decreasing sampling frequency.

While we interpret parameters such as the baseline or the sampling frequency in terms of days

with µx1 being the empirical mean — yields [17.70, 11.60, 8.70, 6.80].
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for illustration purposes, there actually is no “correct” time scale in our model. This is because it
does not adequately model a real psychological system, and so we cannot use the variables to define
an appropriate time scale of the dynamics. For example, if our model were in fact an adequate
representation of the mood system and the variable “anxious” were to change on the level of hours,
then we could use this knowledge to define what extent of simulated data would correspond to one
day. Since this is not the case, however, it is not possible to interpret our results as pertaining to
a particular baseline or sampling frequency; instead, the results have to be interpreted relative to
each other.

4.2 Statistical Analysis
We used the simplest and most commonly employed method to test for early warning signals,
which is based on rolling windows. In particular, for a given rolling window size and for each
new data point, we calculated the early warning indicator and signalled a transition when its size
exceeds the size of the indicator at baseline for a particular decision threshold. We studied different
thresholds, saying that an early warning indicator signalled a critical transition when its current
value is σ ∈ [0.25, 0.50, . . . , 5.75, 6] standard deviations above the early warning indicator value at
baseline. This allowed us to draw receiver operating characteristic (ROC) curves, illustrating how
the true positive and false positive rate of early warning indicators changed as we changed the
σ-threshold. We varied the rolling window sizes to be 10, 25, or 50 days, but never more than half
the baseline. The rolling window size is an important parameter in the statistical analysis; small
window sizes lead to noisier estimates, while large window sizes lead to a reduced sensitivity to
detect changes in the indicator.

We analyzed the statistical properties of early warning signals by studying 500 critical transi-
tions from a positive to a negative mood state and 500 cases for which no transition occurs for each
parameter combination. As can be seen in Figure 4, the system does not always transition exactly
at the bifurcation point (r = 1.20) due to noise. Therefore, we used a change-point method on
the whole time-series to assess the exact time at which the system transitioned (Killick & Eckley,
2014); it is this actual transition that we wish to anticipate, not the noise-free theoretical one.
We provide two analyses. First, we used ROC curves to illustrate how the true positive and false
positive rate of early warning indicators changed for different conditions as we varied the decision
threshold. We refer to the situation where an early warning signal indicated a transition when in
fact the system did not transition at any point in time as a false positive. Conversely, we refer
to the situation where an early warning signal was followed by a transition as a true positive.
Second, in an online monitoring setting it is also important to know how much in advance early
warning indicators would signal an impending critical transition. To assess this, we computed for
all settings how far in advance an actual transition was signalled.

4.3 Simulation Results
We first give an overall picture of how the performance of early warning indicators varied as a
function of the sampling frequency, transition period, and noise intensity. To do so, we combined
two univariate and two multivariate indicators into a single indicator. We followed the methodology
proposed by Drake and Griffen (2010) for combining indicators and created a new early warning
indicator by summing the z-values of the autocorrelation, variance, cross-correlation, and the
dominant eigenvalue of the covariance matrix. Figure 5 shows the ROC curves associated with
the combined indicator as a function of the theoretical transitioning period — that is, the time
between r = 0.60 and r = 1.20 — the noise intensity σε, and the sampling frequency. An ROC
curve summarizes the performance of an indicator for various decision thresholds. The points in
the ROC curves shown in Figure 5 denote different σ-thresholds; for each such curve, the leftmost
point means that we took an increase of a standard deviation of σ = 6 in the combined indicator
compared to baseline as a signal of a transition; the rightmost point denotes a σ = 0.25 threshold.
The larger the threshold, the more hesitant one is to signal a transition. This results in a trade-off
between the false positives rate (shown on the x-axis) and the true positive rate (shown on the
y-axis), such that larger σ-thresholds result in fewer false positives but also fewer true positives.
The black points indicate the frequently used 2σ-threshold (e.g., Clements et al., 2019; Drake &
Griffen, 2010). All results in Figure 5 are with respect to a 100 day baseline and a 50 day rolling
window.
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Figure 5: Shows the ROC curves for the combined indicator as a function of the theoretical duration
of the transitioning period and σε ∈ [4, 6, 8]. Black dots indicate the 2σ-threshold. All results are
with respect to a 50 day rolling window and a 100 day baseline.

As Figure 5 shows, an increase in noise intensity σε resulted in a substantially reduced perfor-
mance of the combined indicator, regardless of the length of the transitioning period. A decrease
in the transitioning period also had a detrimental effect on performance, but this depended on the
extent of the noise: for σε = 4, there was barely a difference in performance between a transitioning
period of 50 and 25 days. However, a shorter transitioning period implied a decreased performance
as the noise increased. This is because a shorter transitioning period, implying a steeper slope
from baseline to the tipping point, is associated with fewer observations compared to a longer
transition period; thus, increased noise can have a more detrimental effect. Interestingly, halving
the sampling frequency from 10 times per day to 5 times per day barely reduced performance, while
sampling only once per day did so considerably. This suggests that, in practical applications where
system-specific features such as the extent of noise and the transition period are fixed, reducing
the sampling frequency up to a point may decrease performance only marginally, but that after
this point is reached performance may drop substantially.

13



Sampling 10x Day Sampling 5x Day Sampling 1x Day

4 6 8 10 4 6 8 10 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σε

Transition Taking 50 Days Transition Taking 25 Days Transition Taking 10 Days

4 6 8 10 4 6 8 10 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σε

Baseline 100 Days Baseline 50 Days Baseline 25 Days

4 6 8 10 4 6 8 10 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σε

M
ea

n 
AU

C
 

Autocorrelation Variance Cross−correlation CovEigen Combined

σε σε

σε σε

σε σε

Figure 6: Shows Area under the Curve (AUC) of selected early warning indicators across sampling
frequencies (top panels), transitioning periods (middle panels), and baselines (bottom panels).
Results are averaged across simulation runs and parameters not depicted in the particular panels,
with error bars denoting one standard deviation across these runs. Grey dotted lines indicate
chance performance. CovEigen uses the dominant eigenvalue of the covariance matrix as early
warning signal.

A widely used performance metric is the Area Under the Curve (AUC): an AUC of 0.50 implies
chance performance (indicated by the grey diagonal lines in Figure 5), while an AUC of 1 implies
perfect detection capabilities. To understand how various early warning signals performed under a
range of settings, Figure 6 shows the average AUC for selected early warning indicators for different
sampling frequencies (top panels), transitioning periods (middle panels), and baselines (bottom
panels) averaged across combinations of all other parameter settings; error bars denote one standard
deviation across these configurations, and the grey dotted lines indicate chance performance.4 The
dominant eigenvalue of the covariance matrix (CovEigen) performed best, closely followed by the
combined indicator, the variance, and the cross-correlation, with the autocorrelation trailing. This
ordering in indicator performance holds across all settings; see Appendix E for results concerning
all other early warning indicators.

The top panels in Figure 6 show that as the sampling frequency decreased, the performance
of all early warning indicators decreased. This is also what we observed in Figure 5, and it
makes sense: fixing the values of other parameters such as the noise intensity and the transition
period, a reduced sampling frequency implies fewer observations and hence a more detrimental
impact of noise, thereby reducing performance. Our simulation study mimics real-world settings

4Note that because our ROC curves do not touch the (0, 0) and (1, 1) coordinates, we linearly interpolate by
adding them before calculating the AUC.
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where certain parameters (e.g., noise intensity, transition period) are not under the control of the
researcher, and in such settings it is not a reduced sampling frequency per se that leads to worse
performance, but the effects a reduced sampling frequency has on the quality of the gathered data.
The autocorrelation is the indicator that was least robust to a decrease in sampling frequency,
hovering close to chance performance for all levels of noise. The middle panels show that, as
the system approached the bifurcation point more quickly, the performance of all early warning
indicators decreased as the noise became more pronounced, mirroring the results shown in Figure
5. The bottom panels show that a decrease in baseline resulted in a decreased performance of all
early warning indicators.

The most salient result of this analysis is that all early warning indicators suffered considerably
from increased noise. This effect seems to be nonlinear, with a substantial drop in performance
when increasing the noise level from σε = 4 to σε = 6, and less pronounced decreases in performance
with further increases in noise. From Figures 2 and 4 we see that the extent of the noise did not
have a drastic influence on the variability of the state variables; at least not to the extent that
one can easily intuit that early warning indicators would perform excellently at σε = 4, but would
basically be useless at σε = 10. Glancing at the variability of the system under σε = 10, one
may argue that this still represents an ideal case when compared to real-world settings, potentially
undermining the usefulness of early warning indicators to anticipate critical transitions in noisy
online monitoring settings.

Sampling 10x Day Sampling 5x Day Sampling 1x Day
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Figure 7: Illustrates when early warning indicators first signalled a transition using a 2σ-threshold,
a 50 day rolling window, a 100 day baseline, a theoretical transition period of 50 days, and noise
intensity σε = 6 for different sampling frequencies. CovEigen uses the dominant eigenvalue of the
covariance matrix as early warning signal.

In the analysis above, we have counted as a success whenever an early warning indicator cor-
rectly signalled a transition. This neglected how far in advance a transition is anticipated; it clearly
matters in practice whether a transition occurs, say, 20 days after an early warning signal or only
2 days after. We now focus on the simulation runs in which an early warning signal occurred prior
to the critical transition, that is, we focus on true positives. Figure 7 illustrates how far in ad-
vance early warning indicators signalled a critical transition using a 2σ-threshold, a 50 day rolling
window, a 100 days baseline, a theoretical transitioning period of 50 days, and a noise intensity of
σε = 6. We see that the early warning indicators signalled a transition far in advance of the actual
tipping point, and that this pattern was fairly consistent across indicators and sampling frequen-
cies. As the true positive rate decreases with a decrease in the sampling frequency, the number of
data points in Figure 7 decreases from the left to the right panel. This is especially the case for
the autocorrelation, which showed the largest decrease in the number of true positives and was
most likely to signal the transition only shortly before it actually occurred for the lowest sampling
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frequency. This pattern is consistent with Figure 6, where the performance of the autocorrelation
decreased most strongly as sampling frequency was reduced. Note that the early warning indica-
tors sometimes signalled a transition further ahead (e.g., 60 days) than the theoretical transition
period (here, 50 days). As discussed in Section 4.1, noise can make the system transition after (or
before) the theoretical tipping point, which — combined with an indicator signalling a transition
early — explains the occasionally large advance in anticipation.

While Figure 7 illustrates one particular setting, Table 3 shows how much earlier the combined
indicator signalled a transition across all noise intensities, theoretical transitioning periods, and
sampling frequencies for a 2σ-threshold. For example, for a theoretical transition period of 50 days,
sampling ten times per day, and noise intensity σε = 4, the combined indicator signalled a transition
about 31.47 days in advance, on average, using a 2σ-threshold. Of course, how far in advance the
indicator suggests a transition depends on the decision threshold one uses. For a sufficiently large
threshold, more data is needed and early warning signals will indicate a transition closer to when
it actually occurs — if at all, since a larger threshold also results in more actual transitions being
missed. Here, we focus on the frequently suggested and generally well-performing 2σ-threshold.
The key observation is that as the noise increased, the indicator signalling a transition occurred
later and later. This pattern holds for all sampling frequencies and transitioning periods, and it
makes sense: reduced noise leads to increased statistical power to detect a change in the early
warning indicator compared to baseline.

Sampling 10x Day Sampling 5x Day Sampling 1x Day

Transition Period 10 25 50 10 25 50 10 25 50

σε = 4 8.77 17.09 31.47 8.91 17.3 31.81 9.93 18.8 31.7
(3.81) (8.48) (16.12) (3.7) (8.7) (16.39) (4.01) (9.27) (18.23)

σε = 6 8.36 16.29 27.89 8.48 16.17 28.84 8.69 14.71 26.63
(4.32) (8.76) (16.26) (4.26) (8.91) (16.04) (4.61) (9.81) (17.57)

σε = 8 6.97 14.19 24.61 7.06 14.57 24.55 6.44 13.08 21.19
(4.96) (8.84) (15.59) (4.91) (8.78) (15.7) (4.65) (9.21) (16.27)

σε = 10 6.09 11.51 21.11 6.03 11.67 20.96 5.24 10.46 18.92
(4.43) (8.19) (14.53) (4.54) (8.11) (14.69) (4.2) (7.61) (15.04)

Table 3: Shows the average difference in days between the actual transition and when the com-
bined indicator first signals a transition using a 2σ-threshold across different noise levels, sampling
frequencies, and theoretical transition periods. The average is taken across simulation runs, base-
lines, and rolling window sizes; the standard deviation across these configurations is shown below
in parenthesis.

4.4 Simulation Discussion
To our knowledge, ours is the first simulation study that explicitly studied how well early warning
indicators perform when used in an online monitoring setting, rather than in settings where the
occurrence of the tipping point is known. Using an ecological model and assuming knowledge of a
tipping point, Peretti and Munch (2012) also found that the performance of early warning indicators
to anticipate critical transitions was substantially reduced under increased noise. Furthermore,
they found that a reduction in sampling frequency had a detrimental effect on the performance,
and that the performance of the autocorrelation was most strongly affected by a reduction in
sampling frequency, which is substantiated by our findings. In a similar spirit, Clements et al.
(2015) simulated from the logistic equation with grazing in an ecology context and studied how
a reduction in sampling frequency as well as spatial subsampling of the population impacted the
performance of early warning indicators, assuming knowledge of the tipping point. They found
that a decrease in sampling frequency had a more detrimental effect than spatial subsampling.
An encouraging result is reported by Brett et al. (2018), who showed that several early warning
indicators were robust to reporting errors and aggregation in anticipating epidemic transitions;
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future work may wish to assess the robustness of early warning signals to errors that are more
specific to psychology.

In our simulations, the number of measurements taken until the system reached the bifurcation
point r = 1.20 and the rate with which r changes — the forcing rate — were not independent. For
example, a transition period of 10 days with a sampling frequency of 10 samples per day resulted
in 100 observations from the initial change in r to r = 1.20, while a transition period of 25 days
with the same sampling frequency resulted in 250 samples. This implies that the rate of change
in r was smaller in the latter case than in the former. In real-world settings where we wish to
anticipate future transitions, these two factors — the forcing rate and the time it takes the system
to reach the tipping point — cannot be disentangled, and so we have not done so here. In theory,
one could disentangle them by subsampling the longer time-series to have the same length as the
shorter time-series. Clements and Ozgul (2016) studied how the forcing rate affects detectability of
early warning signals in simple one-dimensional models. They found that, fixing the length of the
time-series, a higher forcing rate led to stronger signals in most of the indicators they considered.
When keeping the time-series of the smaller forcing rate at their original, longer length, indicators
performed better due to the increased sample size compared to higher forcing rates, which is what
we have observed as well. We assumed a linear increase in the bifurcation parameter, and while
we expect that our results are robust to different change processes, future work may wish to assess
this in more detail.

A principal limitation of our results is that the underlying Generalized Lotka-Volterra model
is not an adequate description of the mood system. Therefore, it is not possible to translate our
findings as speaking directly to the performance of early warning signals in anticipating critical
transitions in the mood system. Instead, our investigation may be interpreted in two ways.

First, our simulation study illustrates how one can investigate the performance of early warning
signals to anticipate critical transitions when a model is available. If the model one simulates from is
a sensible representation of a psychological system, using ROC curves to quantify the performance
of various early warning indicators under different noise intensities, sampling frequencies, baseline
periods, and transition periods could then directly inform empirical applications. A ROC curve
allows one to see how different decision thresholds balance the true positive and false positive rates.
In our investigation, we have focused on the widely used 2σ-threshold, which generally provides a
good balance between true positives and false positives. When studying a real psychological system
— and if one has a particular intervention in mind — one may instead choose a decision threshold
that allows more false positives in order to increase the number of true positive. Lastly, while some
of our conclusions must be interpreted with caution as being potentially specific to the Lotka-
Volterra model — for example, the finding that skewness and spatial variance performed poorly
(see Appendix E) — others, such as the fact that performance decreased with increasing noise or
with decreasing sampling frequency, likely hold for a large class of real psychological systems.

The notion of critical transitions between “healthy” and “unhealthy” stable states has played an
important role in theoretical psychology (e.g., Borsboom, 2017; Cramer et al., 2016), and a second
interpretation of our results understands the Lotka-Volterra model in this way: as an ideal dynam-
ical system that shows critical transitions between two stable states (see also Haslbeck & Ryan,
2021; van de Leemput et al., 2014). In contrast to this ideal system, real psychological systems
likely show complications that suppress the occurrence of early warning signals, as discussed in
Section 3. For example, the exact components of real psychological systems and how to measure
them are generally unknown; it is unclear which components would actually show critical slow-
ing down, if at all; and real psychological systems may be subject to correlated noise, which can
suppress early warning indicators. In this interpretation, our finding that early warning indicators
are very sensitive to noise in such an ideal system puts into question their potential usefulness in
practice. While such a strong inference does not strictly follow — the class of real psychological
systems is likely large, and we might find cases where early warning signals perform better than in
the model we studied here — we do believe that our results invite a critical discussion on how to
move the study of early warning signals forward. We turn to such a discussion in the next section.

5 A Way Forward for Early Warning Signals
Applying early warning signals successfully requires addressing a number of theoretical and practi-
cal considerations. In this section, guided by Figure 8, we review these considerations and provide
recommendations and suggestions for future research. Several of the points we touch on require
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dedicated research programs themselves, and our goal here is not to address them in full; instead,
we aim to point out the challenges and choices researchers face when applying early warning signals
to anticipate critical transitions in practice.

Design Data Pre-processing Statistical Modeling
Measurement

Sampling Frequency
Adequate Baseline

Interventions
Filtering

Detrending
Transformations

Choice of Indicator
Statistical Inference
Sensitivity Analyses

Receiver Operating Characteristic Curves

Target of Interventions
Timing of Interventions
Cost-Benefit Analysis

Theory
Multiple Stable States

Critical Transitions
System Components

Figure 8: Illustrates the challenges and choices that require careful thought when applying early
warning signals in practice.

Theory. In sharp contrast to their reputation of being generic or model-agnostic, we have seen
that the occurrence of early warning signals depends on the specifics of the system under study;
there are systems that show critical slowing down even though they do not exhibit critical tran-
sitions (Kéfi et al., 2013; Wagner & Eisenman, 2015), and there are (a potentially large class of)
systems which show critical transitions but no critical slowing down (Hastings & Wysham, 2010).
Even if the target system falls into the class of systems that show critical slowing down before
critical transitions, early warning signals may only be observable in a small number of variables
of the system (Boerlijst et al., 2013; Patterson et al., 2021). While recent work tries to find the
system components that most strongly express critical slowing down (Dakos, 2018; Weinans et al.,
2019), purely statistical work will not put early warning signals on a solid footing.

Instead, we need to build a basic understanding of the system under study. Does the system
actually exhibit abrupt transitions between stable states, or are they smooth? In case of the latter,
early warning signals, even if they occur, may not add much predictive utility above other indicators
such as the mean. Understanding the types of transitions requires more descriptive research (e.g.,
Helmich et al., 2020; Hosenfeld et al., 2015; Olthof et al., 2020), an important first step in theory
construction (Borsboom et al., 2021). Yet such descriptive research should not only look at a
system’s state variables, but relate changes in these to underlying drivers (e.g., Bestelmeyer et
al., 2011). In the context of our mood example, this would require measuring the underlying
variable “stress” that drives critical transitions in the mood variables, rather than measuring only
the latter. Is the relationship between drivers and state variables linear or nonlinear? Early
warning signals of critical transitions are intricately linked to a nonlinear relationship — otherwise
small changes in a driver would not be able to lead to large changes in the state variables — and
studies that establish a nonlinear relationship are indeed much more likely to find evidence of early
warning signals (Litzow & Hunsicker, 2016). A necessary condition for a nonlinear relationship that
gives rise to multiple stable states and critical transitions is the occurrence of (strong) reinforcing
feedback loops (Kéfi et al., 2016; Meadows, 2008). Theoretically mapping the reinforcing feedback
loops that may occur in a particular psychological system is therefore an important endeavour.
While empirically establishing a nonlinear relationship may turn out to be difficult (e.g., Capon
et al., 2015; Dudney & Suding, 2020; Hillebrand et al., 2020; Petraitis, 2013), it would constitute
a crucial step forward. Another key question concerns what components constitute the system.
Following Borsboom (2017), mental disorders such as major depression are widely viewed not as
a latent common cause, but instead arise out of a network of mutually enforcing components;
what are these components exactly? Formal models aid in answering these questions by forcing
researchers to be explicit in their assumptions about the system (e.g., Robinaugh et al., 2020).

An instructive example of the power of formal modeling for early warning signals comes from
epidemiology. O’Regan and Drake (2013) showed that early warning indicators were highly pre-
dictive of disease elimination by increased vaccination uptake in the basic Susceptible-Infectious-
Susceptible (SIS) and Susceptible-Infectious-Removed (SIR) compartmental models, but not when
the disease reemerged as vaccination uptake decreased.5 Moreover, while the autocorrelation in-
creased as the disease approached elimination for both models, the variance decreased for the SIR

5SIS and SIR models segment the population into susceptible (S), infectious (I), and — in the SIR model, which
assumes lifelong immunity — due to recovery or death removed (R) groups through which an infectious disease can
spread (see e.g., Keeling & Rohani, 2011).

18



model, which models diseases with life-long immunity. Along similar lines, O’Regan et al. (2016)
studied the elimination of vector-borne diseases such as malaria through gradually deployed control
measures. They showed that in theory, critical slowing down is expected to occur. In particular,
they found that the autocorrelation and variance increased when eliminating malaria through a re-
duction in the biting rate of the mosquitoes or their population size. However, the autocorrelation
did not anticipate elimination through a reduction of the human infectious period or a reduction
of the per-capita mosquito mortality rate, while a decrease in variance anticipated elimination in
both cases. In a similarly impressive modeling feat, O’Dea et al. (2018) showed that, in a SIR
model, the autocorrelation of the number of infected provided a better estimate of the distance
to the epidemic threshold than the autocorrelation of the number of susceptibles. In recent work
combining empirical analysis and theoretical modelling, Dablander et al. (2021) found that early
warning indicators tended to decrease rather than increase prior to the second COVID-19 wave.
This is because the underlying driver did not change slowly compared to the characteristic time-
scale of the system (a key assumption of critical slowing down), obscuring early warning indicators.
All these theoretical insights guide what one may expect in practical applications; they can help us
understand why we see, or not see, certain patterns in data. Another example comes from epilepsy
research, where models suggested that the change in brain state from normal to seizure can be
described as a bifurcation; empirical evidence of critical slowing down broadly supports the use of
early warning signals as a means to anticipate seizures (Maturana et al., 2020).

There is little doubt that psychology in general and psychopathology in particular are far re-
moved from the deep understanding epidemiologists have about the mechanics of infectious disease
transmission. But this is no reason to despair, with recent modeling efforts in psychopathology
paving the way for a future rich in formal modeling (e.g., Bayani et al., 2017; Burger et al., 2020;
Cramer et al., 2016; Duncan et al., 2019; Kossakowski et al., 2019; Robinaugh et al., 2019; Schiepek
et al., 2017). An approach that lies between purely statistical and sophisticated theoretical model-
ing work is to tailor relatively simple dynamical system models to the specific phenomenon under
study. If one wants to assess whether the target system exhibits bistability, critical transitions, and
critical slowing down, then a simple model which allows for these properties is the cusp-catastrophe
model (e.g., Zahler & Sussmann, 1977; Zeeman, 1976), which has been fruitfully applied, for ex-
ample, in the study of attitudes (e.g., van der Maas et al., 2020; van der Maas et al., 2003). In
addition to the relative ease with which it can be tested on data (Grasman et al., 2009), the cusp-
catastrophe model requires the specification of two underlying drivers, thus moving away from
simple statistical models towards incorporating and subsequently testing theoretical assumptions.

Design. Once a basic theoretical understanding of the system has been established, a key ques-
tion is how to design studies to investigate potential transitions of the system empirically. The
most promising empirical application of early warning signals is in online monitoring settings,
which come with unique challenges. To shed light on these challenges, we simulated data from a
four-dimensional Generalized Lotka-Volterra model, mimicking what using early warning indica-
tors as tools for personalized interventions requires: a way to assess, in an online fashion, whether
a person is likely to rapidly transition into an undesired stable state. By sequentially simulating
from the model, and at each time point assessing whether the system is likely to transition, we
have mirrored this situation in silico. We have found that univariate early warning indicators such
as autocorrelation, variance as well as multivariate indicators such as the cross-correlation and the
dominant eigenvalue of the covariance matrix perform exceptionally well under low-noise settings.
Yet by increasing the noise — to settings that may still be smaller than what we observe in real
psychological systems — their predictive performance diminished rapidly. For practical applica-
tions, this implies that researchers should do their best to reduce noise. Since measurement error
can add to noise, psychometric techniques such as latent variable modeling that reduce measure-
ment error may be a fruitful avenue (Bollen, 1989), as are models for transitions that explicitly
take measurement error into account (see e.g., Hefley et al., 2013).

Our simulation results also illustrate other important factors for the design of empirical studies
of early warning signals. While we found that as the sampling frequency decreased, the performance
of all early warning indicators decreased, this decrease was nonlinear: performance barely dropped
when going from sampling ten times a day to five times a day, but then dropped substantially
when sampling only once a day.6 Collecting data too frequently is an unnecessary burden on the

6We want to stress again that it is not a reduction in sampling frequency by itself that reduces performance;
instead, fixing parameters that are generally not under the control of the researcher (such as noise intensity and the
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participant and is likely to reduce compliance, and so an understanding of the time scale of the
system is important for the design of empirical studies. For example, if changes happen on the
level of weeks, it may be unnecessary to collect data on a daily level. Yet if changes happen on the
level of days, collecting data only weekly will be inadequate. The required sampling frequency is
crucially dependent on the time it takes the system to reach the tipping point. As we have seen
in our simulation results, as the transition period decreased — that is, as resilience was eroded
more quickly — detecting early warning signals became more difficult. Understanding the way and
speed with which resilience is eroded in, for example, different psychiatric disorders therefore has
implications for their empirical study. Similarly, online monitoring requires one to test whether the
current early warning indicator has increased compared to a baseline where no or little change in
the relevant underlying parameters occurs. As illustrated in our simulation results, the extent of
the baseline influences the performance of early warning signals; understanding when the resilience
of the system is likely being eroded and when it is not is therefore important in practice.

One core concern that we did not illustrate with our simulation study is measurement: how
can we best measure the variables that constitute the system components in practice? In our
simulation study, we have assumed a one-to-one mapping between psychological processes (e.g.,
the mood state “cheerful”) and the observed variables. This is likely not the case in practice; for
example, one might observe sudden transitions between positive and negative states when they
are assessed momentarily, but smooth transitions when they are assessed retrospectively due to
some kind of averaging process that is happening in retrospective assessment. This may have
implications for the occurrence of early warning signals, and further stresses the interplay between
theorizing and the design of empirical studies (see also Haslbeck et al., in press).

Data pre-processing. In our simulation setup, the only system-external factor influencing the
generation of the data was uncorrelated Gaussian noise, which resulted in data that is in some sense
“ideal”. real-world data, on the other hand, is much messier. There may be nonstationarities in the
mean or seasonal trends that impose a strong correlational structure on the data, and these can lead
to spurious alarms or missed transitions. Data pre-processing steps, such as detrending to remove
nonstationarities in the mean, and filtering to remove potential seasonalities, are important aspects
in the study of early warning signals (Dakos et al., 2012a; Jäger & Füllsack, 2019; Lenton et al.,
2012). These come in many variants, however, and therefore either afford a theoretically motivated
choice or — more likely — a thorough sensitivity analyses. The majority of studies investigating
early warning signals in fields outside of psychology provide such a sensitivity analysis by varying,
for example, the bandwidth of a Gaussian filter and reporting for which settings a transition is
indicated. This is currently not being considered in the psychology literature, and we suggest
that researchers routinely employ such sensitivity analyses to avoid drawing potentially spurious
conclusions. In online monitoring settings, such sensitivity analyses would result in a distribution
over early warning indicators, requiring the definition of thresholds beyond which one would signal
a transition in practice.

Statistical modeling. Once data has been collected and pre-processed, the question turns to
statistical modeling. First, what early warning indicators should we employ? The list of suggested
indicators is large, ranging from simple univariate indicators such as autocorrelation, variance,
kurtosis, and skewness (Carpenter & Brock, 2006; Guttal & Jayaprakash, 2008; Scheffer et al.,
2009) to multivariate indicators such as spatial variance and cross-correlation (e.g., Dakos et al.,
2010; Kéfi et al., 2014; Weinans et al., 2021). These can be implemented in a nonparametric way
using rolling windows, or in the form of parametric time-varying models (Dakos et al., 2012a).
In our simulation study, we have focused on the nonparametric approach due to its ubiquity and
ease of use — virtually any summary statistic can be computed by means of rolling windows,
while implementing and estimating them in parametric models can be challenging. The size of
the rolling window is an important parameter: small window sizes lead to noisier estimates, while
large window sizes lead to a reduced sensitivity to detect changes in the indicator. Understanding
the extent to which a difference in rolling window sizes influences early warning signals is therefore
prudent. While such sensitivity analyses are widespread in the study of early warning signals in
fields outside of psychology, they are absent in psychology itself. Thus, to avoid drawing potentially
spurious conclusions, we not only recommend doing sensitivity analyses in the pre-processing of

transition period), a reduction in sampling frequency results in fewer observations, a more detrimental impact of
noise, a less fine-grained picture of the change process, thereby reducing performance.
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data, but also in the statistical analysis when relying on rolling windows. Similarly, because single
indicators are more prone to false alarms (e.g., Ditlevsen & Johnsen, 2010; Wagner & Eisenman,
2015), we recommend combining several indicators using the methodology we outlined in our
simulation study.

Other statistical modeling approaches incorporate assumptions into models and then select be-
tween the models. For example, Boettiger and Hastings (2012b) suggested comparing two models,
one of which assumes that the system undergoes a saddle-node bifurcation and another one that
does not, while Bury et al. (2021) used deep learning to train a classifier to distinguish between
three types of bifurcations and a system that undergoes no transition, finding that their method
strongly outperformed traditional univariate indicators. Lade and Gross (2012) outlined an ap-
proach which builds assumptions about the dynamics of the system into the model, finding that
incorporating such information can lead to improved performance. This approach moves away from
the generic aspect of indicators towards incorporating features that are specific to the particular
system under study. The call to resist the lure of elusive “generic” early warning signals is not new
in ecology (Boettiger & Hastings, 2013), but has become stronger as their limitations have become
more apparent (Clements & Ozgul, 2018). We believe that resisting this lure is important also in
a psychological context, and that there are exciting avenues for future research that incorporates
system-specific information in order to better anticipate transitions in psychological systems.

Lastly, if a model of a target system — even if simplified — is available, researchers should
assess the performance of their statistical method in simulation by using, as we have illustrated,
ROC curves to understand the true positive and false positive rate of the method for various
decision thresholds (see also for example Clements et al., 2019).

Interventions. Ultimately, the potential of early warning signals lies not only in anticipating
critical transitions, but also in allowing us to intervene in time to avoid such transitions. Several
researchers have suggested that early warning signals could be very useful for personalized early
intervention in the context of, for example, psychotherapy and psychiatric disorders (e.g., Hayes
et al., 2015; Hofmann et al., 2016; Nelson et al., 2017; Olthof et al., 2019; Schiepek et al., 2011;
Wichers et al., 2019; Wichers et al., 2020). A key issue is how exactly we would go about intervening
in the system, and what the respective costs and benefits are — these are needed for a decision-
theoretic analysis that goes beyond mere statistical inference.

Another key issue is whether we can actually intervene in time to avert a critical transition.
While we did not study interventions in our simulation study directly, our results still offer some
insight. In particular, whether we can intervene in time to avert a transition depends on how far
in advance early warning indicators signal a transition. We have seen that early warning indica-
tors can signal a transition far in advance of the actual transition if noise is small. Under more
realistic, larger noise settings early warning signals occur closer to the actual transition. Suppose
one wishes to use early warning signals to anticipate the onset of depression, and suppose one
observes a significant increase in indicators; how far is the transition away? How much time do
we have to intervene and avoid a transition? Since this depends strongly on the quality of the
data and on the speed with which the system approaches the tipping point, relative changes in
indicators cannot provide an answer. Instead, absolute levels of early warning indicators may be
used to estimate the distance to the tipping point (O’Dea et al., 2018; Wissel, 1984). However,
these absolute levels will depend on the system under study as well as on specifics of the data. The
extent of the autocorrelation, for example, reflects the ratio of the time scale of the system to the
sampling frequency. To illustrate, suppose the system changes slowly, say on the level of weeks.
If one samples it many times a day, then the measurements will exhibit a high autocorrelation.
While the autocorrelation technically approaches one at the tipping point (more specifically, at the
zero-eigenvalue bifurcation), this is the case only for unidimensional systems. For coupled multidi-
mensional systems — and thus, all systems of real-world interest — the level of the autocorrelation
of different system components at the tipping point is system-dependent, and so using absolute
levels to assess the distance to the tipping point requires sophisticated understanding (e.g., O’Dea
et al., 2018). Biggs et al. (2009) found that relative changes in autocorrelation and variance can
occur too late to avert a transition in a fisheries model, but that absolute levels in system-specific
indicators would enable one to act in time. Thus, similar to what we have seen in the context
of anticipating transitions, using early warning signals as a way to intervene in time to avert a
transition requires a good understanding of the target system.

If the goal is to anticipate a transition into an unhealthy state, then early warning signals
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alone may not be the best way to advance such a goal. Take the onset of major depression as
a prediction problem, for example. Are moods momentarily assessed (e.g., Wichers et al., 2020)
really the most predictive features? One might go beyond early warning indicators by using
information from sensor data, including physiological variables and even geo-location data (e.g.,
Saeb et al., 2016). This approach might draw from the growing literature on machine learning
in psychiatry and psychopathology (e.g., Bzdok & Meyer-Lindenberg, 2018; Dwyer et al., 2018;
Mohr et al., 2017). For example, Webb et al. (2020) tried to predict post-treatment depression
scores in a clinical sample that underwent treatment in a psychiatric hospital using a range of pre-
treatment variables. While they did not anticipate the onset of depressive episodes in real-time,
one may well translate their approach to further such a goal. Along these lines, Jacobson and
Chung (2020) used sensor data — including data on location, weather, and heart rate — collected
using smartphones in the past 24 hours to predict the next hour of depression symptom severity in
a small sample reporting clinical levels of depression. These are important first studies indicating
that a predictive approach that goes beyond generic early warning signals may be feasible; if the
goal is simply to predict the onset of mental disorders such as depression, this strikes us as a viable
approach well worth exploring. Such an approach does not aim to develop formal models of mental
disorders, however, and this means a lack of mechanistic understanding. It is also less likely to
inform promising targets of interventions. Formal models, on the other hand, have the potential to
inform interventions and may also result in more powerful, system-specific early warning indicators
of transitions. Harnessing the full potential of early warning signals, then, is deeply intertwined
with the goal of advancing our understanding of mental disorders by building formal models.

6 Conclusion
Dynamical systems theory provides a unifying framework for studying how systems as disparate
as the climate and the behaviour of humans change over time. Some systems can exhibit multiple
stable states and critical transitions between them due to internally changing dynamics. Early
warning signals based on critical slowing down that may anticipate such transitions have been
widely discussed in ecology, epidemiology, and climate science in the last two decades, finding
shelter also in psychology and psychiatry. With this paper, we hope to contribute to a better
understanding of their limitations; to an appreciation of the challenges associated with their use
in practice; and to possible avenues that may put the study of early warning signals in psychology
and psychiatry on a solid footing.
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A Critical Slowing Down for Unidimensional Systems
Here, we illustrate the theory of critical slowing down for unidimensional systems more rigorously.
To do so, we need to make three key assumptions. First, we assume that the time-series is
generated by a dynamical system in equilibrium. Second, we assume that linear stability analysis
is informative for the behavior of the system close to the stable equilibrium. Finally, we assume
that the system approaches a zero-eigenvalue bifurcation.

We first linearize the system at its equilibrium. In linear stability analysis the idea is to simplify
the possibly non-linear dynamical system around its equilibrium and map out the dynamics of the
simplified system when the state variable is driven out of the equilibrium by some small external
perturbation. To model these perturbations explicitly, we rewrite the deterministic one-dimensional
system ẋ(t) = f(x(t)) into its stochastic version:

dX(t) = f(X(t))dt+ σdW (t) , (3)

where dX(t) denotes an Itô integral, σ the diffusion term, and dW (t) is a Wiener process. Equation
(3) assumes that every period [0, T ] is subject to independent, normally distributed noise of mean
zero and variance T . This is the simplest form of introducing noise and other specifications can be
considered (see for example O’Regan & Burton, 2018).

Let x? be a fixed point, i.e. f(x?) = 0, and η(t) be a small external perturbation of the system
around its stable equilibrium, yielding X(t) = x? + η(t). We linearize dX(t) = dη(t) at the stable
equilibrium to obtain:

dη(t) = f(x? + η(t))dt+ σdW (t) (4)

= f(x?) + f ′(x?)η(t)dt+ σdW (t) +O(η(t)2) (5)
≈ f ′(x?)η(t)dt+ σdW (t) , (6)

since f(x?) = 0 and higher order terms are assumed to be negligible. Equation (4) is an Ornstein-
Uhlenbeck process whose solution is (e.g., Gardiner, 2004, p. 106):

ηT = ef
′(x?)T η0 + σ

∫ T

0

ef
′(x?)(T−t)dW (t) . (7)

Recall that a stable equilibrium implies that f ′(x?) < 0. In that case, and since the expectation
with respect to a Brownian motion is zero, the noise approaches zero in expectation:

lim
T→∞

E[ηT ] = lim
T→∞

ef
′(x?)T η0 = 0 . (8)

The stationary variance of an Ornstein-Uhlenbeck process for f ′(x?) < 0 is given by:

lim
T→∞

Var(ηT ) = − σ2

2f ′(x?)

(
1− lim

T→∞
e2f
′(x?)T

)
= − σ2

2f ′(x?)
. (9)

This result demonstrates why a system approaching the bifurcation point is expected to exhibit
an increase in variance. At the bifurcation point, f ′(x?) changes sign. If the system approaches a
bifurcation point from a stable regime, we have f ′(x?)→ 0−, blowing up the variance to infinity.

A similar result can be shown for the autocorrelation of the time series. The stationary covari-
ance (for finite τ = |T − S|) of the Ornstein-Uhlenbeck process is given by:

lim
S,T→∞

cov(ηT , ηS) = − σ2

2f ′(x?)
ef
′(x?)τ , (10)

resulting in an autocorrelation of

lim
S,T→∞

cor(ηT , ηS) = lim
S,T→∞

cov(ηT , ηS)√
Var(ηT )Var(ηS)

= ef
′(x?)τ . (11)

Therefore, if lim
x?→0−

f ′(x?), the autocorrelation approaches one from below.
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A.1 Discrete-time Analysis
Since real-life systems have to be measured at discrete time points, it is instructive to write the
result in discrete-time notation. The discrete-time equivalent of the Ornstein-Uhlenbeck process
is an autoregressive (AR) model of order one. For the discrete time step τ = 1, the AR(1) can be
written as:

ηt = ηt−1e
f ′(x?) + εt , (12)

with εt ∼ N(0, σ2
ε ) and σ2

ε = −σ2 1−e2f
′(x?)

2f ′(x?) . The variance of the AR(1) process is then given by:

Var[ηt] =
σ2
ε

1− e2f ′(x?)
= − σ2

2f ′(x?)
, (13)

which is the same as obtain from the continuous-time analysis. Clearly, if f ′(x?) approaches zero
from below, the AR(1) approaches the random walk limit with exploding variance.

B Critical Slowing Down for Multidimensional Systems
Here, we illustrate the theory of critical slowing down for multidimensional systems more rigorously.
The linearization result of Equation (3) generalizes to the multivariate system:

dη(t) = J(x?)η(t)dt+ SdW (t) , (14)

where η(t), dW (t), and x? are vectors of the same length. J(x?) is the full rank Jacobian matrix
evaluated at the fixed point and S a matrix capturing interdependencies of the noise. We again
assume the simplest form of independent and normally distributed noise, S = σI. To simplify the
exposition, we only consider symmetric Jacobian matrices, as the example considered in the main
text.7 The result of the multidimensional Ornstein-Uhlenbeck process is derived similarly as in the
unidimensional case as:

ηT = eJ(x
?)T η0 + σ

∫ T

0

eJ(x
?)(T−t)dW (t) . (15)

If the system is in a stable equilibrium, all real parts of the Jacobian’s eigenvalues are negative. In
that case, the noise wipes out over time and we have:

lim
T→∞

E[ηT ] = lim
T→∞

eJ(x
?)T η0 = 0 . (16)

The stationary covariance for finite T − S ≥ 0 is given by:

lim
S,T→∞

cov(ηT , η
>
S ) = −σ2eJ(x

?)(T−S)H(x?)−1 , (17)

where H(x?) = J(x?) +J(x?)>. This makes clear that the variance of the system perturbed at the
stable equilibrium is given by:

lim
T→∞

var(ηT ) = −σ2H(x?)−1 . (18)

If an eigenvalue of J(x?) approaches zero from below, the same is true for H(x?), resulting in the
divergence of the variance.

B.1 Discrete-time Analysis
The discrete-time equivalent of the multidimensional Ornstein-Uhlenbeck process is a Vector au-
toregressive (VAR) process of order one. For discrete time steps of size one, Equation (4) can be
written as a VAR(1) model:

ηt = Φηt−1 + εt , (19)
7Note that if J is not symmetric, the integral below cannot be solved explicitly.
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where Φ = eJ(x
?) and εt ∼ N (0,−σ2H(x?)−1). The VAR(1) model is stationary if the real parts

of the matrix Φ lie within the unit circle, corresponding to the requirement of strictly negative
eigenvalues of J(x?). In that case, the lag-0 variance matrix Σ0 = Var(ηT ) becomes:

Var(ηT ) = E
[
ηtη
>
t

]
= ΦE

[
ηt−1η

>
t−1
]

Φ> + E
[
εtε
>
t

]
Σ0 = ΦΣ0Φ> − σ2H(x?)−1 . (20)

Equation (20) can be solved explicitly by stacking the columns using the vec operator (Hamilton,
1994, p. 265), resulting in:

vec(Σ0) = −σ2(I− Φ⊗ Φ)−1vec(H(x?)−1) , (21)

where ⊗ denotes the Kronecker product.
Since the eigenvalues of the Kronecker product are just the pairwise products of the eigenvalues

of Φ, there exists a finite solution of the covariance matrix. If an eigenvalue of Φ approaches zero
from below, Equation (21) diverges, increasing the variance.

From the lag-0 covariance matrix Σ0 and the VAR(1) coefficient matrix Φ follows the lag-k
covariance matrix (Hamilton, 1994, p. 266):

cov(ηT , ηT−k) = Σk = E
[
ηt, η

>
t−k
]

= ΦkΣ0 , (22)

which can be used to make model-based predictions about the strength of the autocorrelation in
the individual system components.

C Critical Slowing Down Differs Among Components
We reproduce and extent part of the results by Boerlijst et al. (2013) here to further illustrate
the nuances behind critical slowing down. We simulate from the same three-species model with
juvenile prey (J), adult prey (A), and a predator (P ) which only attacks adult prey:

dJ

dt
= A− J2

1 + J2
− µJJ (23)

dA

dt
=

J2

1 + J2
−AP − µAA (24)

dP

dt
= AP − µPP , (25)

where (µJ , µA, µP ) are the death rates of the species. Following Boerlijst et al. (2013), we set
µJ = 0.05 and µA = 0.10 and simulate from this model, adding independent noise with σε = 0.005
to the death rate of all species.

We slowly varied the death rate of the predators from µP = 0.45 to µP = 0.553, which is the
bifurcation point at which the predators become extinct. We simulated 60,000 time points using a
step size of ∆ = 0.10 and subsampled the data by taking only every 20th time point; subsampling
reduced the magnitude of early warning indicators that are based on correlations, which otherwise
would be at ceiling.
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Figure 9: Left: Only juvenile prey showed a continuous increase in autocorrelation as the system
approaches the bifurcation point µP ≈ 0.553. Middle: Only juvenile prey showed an increase in
standard deviation. Right: Multivariate indicators (z-standardized) such as the spatial variance
and the average absolute value of all cross-correlations first decreased, then increased comparatively
slowly (spatial variance) or suddenly (cross-correlation). Only the dominant eigenvalue of the
covariance matrix (CovEigen) increased monotonically.

Figure 9 shows that only the juvenile prey showed an increase in autocorrelation as the system
approached the bifurcation point µP ≈ 0.553 (left panel). In fact, the autocorrelation of the adult
prey and the predator actually decreased, except that there was a rapid increase in autocorrela-
tion for predators right before the bifurcation point.8 Similarly, only the juvenile prey showed
an increase in standard deviation (middle panel). The right panel in Figure 9 shows that the
largest eigenvalue of the covariance matrix — an early warning indicator recently proposed by
Chen et al. (2019) — monotonically increased as the system approached the bifurcation point. In
contrast, the early warning indicator spatial variance (Guttal & Jayaprakash, 2009; Kéfi et al.,
2014), which is defined as the variance of the three-dimensional vector given by the species, and
the cross-correlation first decreased when approaching the bifurcation point. The spatial variance
increased markedly before the bifurcation point, while the cross-correlation increased only imme-
diately before the predators become extinct. The results are qualitatively the same when one adds
independent noise not to the death rates (that is, multiplicative noise), but independent noise to
the populations (that is, additive noise). Our analysis extends the results presented in Boerlijst
et al. (2013), showing that multivariate indicators, too, might be suppressed or show a counter-
intuitive decrease when approaching a tipping point. This again underscores the need to have
at least partial understanding of the system under study. In particular, while the system might
show critical slowing down, it may not be expressed in all system variables, or even the variables
that seem most intuitive for critical slowing down to occur. For a rigorous mathematical analysis
explaining the conditions under which one can expect early warning signals and in which variables,
see Patterson et al. (2021).

D Definition of Early Warning Indicators
Here we provide the mathematical definition of the early warning indicators used in the simulation.
Let T denote the number of data points in a particular rolling window. Let xki denote the ith
observation of the kth variable comprising our Generalized Lotka-Volterra model. Let x̄k denote the
sample mean of variable xk across a rolling window that is apparent from context. The univariate
early warning indicators are computed on the variable x1 and are given by:

8Boerlijst et al. (2013) only showed results for µP ≤ 0.55, which is why they did not observe this sudden increase.
Technically, therefore, the predators showed critical slowing down, but it is too little and too late to act in practice.

32



Autocorrelation =

∑T
i=1 (x1i − x̄1)

(
x1(i−1) − x̄1

)√∑T
i=1 (x1i − x̄1)

2
√∑T

i=1

(
x1(i−1) − x̄1

)2 (26)

Variance = (T − 1)−1
T∑
i=1

(x1i − x̄1)
2 (27)

Skewness =

∑T
i=1 (x1i − x̄1)

3(∑T
i=1 (x1i − x̄1)

2
) 3

2

(28)

Kurtosis =

∑T
i=1 (x1i − x̄1)

4(∑T
i=1 (x1i − x̄1)

2
)2 . (29)

Let x ∈ RT×4 denote the matrix of observations of the four variables for a rolling window of
size T . Denote xi· as the vector of observations of the four variables at time point i, and let x̄
denote the multivariate sample mean over the window of size T . The multivariate indicators are
given by:

|Cross-Correlation| =

∣∣∣∣∣∣T−2
T∑
k=1

T∑
l=1

∑T
i=1 (xki − x̄k) (xli − x̄l)√∑T

i=1 (xki − x̄k)
2
√∑T

i=1 (xli − x̄l)2

∣∣∣∣∣∣ (30)

Spatial-Variance = T−1
T∑
i=1

(xi· − x̄)2 (31)

Spatial-Skewness =

∑T
i=1(xi· − x̄)2(∑T
i=1 (xi· − x̄)

2
) 3

2

(32)

Spatial-Kurtosis =

∑T
i=1(xi· − x̄)4(∑T
i=1 (xi· − x̄)

2
)2 , (33)

where the exponents indicate element-wise operations. The dominant eigenvalue of the covariance
matrix is the largest absolute eigenvalue of the covariance matrix, see Chen et al. (2019), for details.

E Further Simulation Results
Figure 10 shows the average Area under the Curve (AUC) across settings for the remaining early
warning indicators.
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Figure 10: Shows Area under the Curve (AUC) of selected early warning indicators averaged
over the transitioning period across sampling frequencies (top panels) and averaged over sampling
frequencies across transitioning period (bottom panels). All results are further averaged over
baseline (25, 50, 100 days), and rolling window (10, 25, 50 days); error bars denote one standard
deviation across these configurations.
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