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Abstract

There is a large consensus on the fundamental role of firm-level supply chain networks in macroe-
conomics. However, data on supply chains at the fine-grained, firm level are scarce and frequently
incomplete. For listed firms, some commercial datasets exist but only contain information about the
existence of a trade relationship between two companies, not the value of the monetary transaction.
We use a recently developed maximum entropy method to reconstruct the values of the transac-
tions based on information about their existence and aggregate information disclosed by firms in
financial statements. We test the method on the administrative dataset of Ecuador and reconstruct
a commercial dataset (FactSet). We test the method’s performance on the weights, the technical
and allocation coefficients (microscale quantities), two measures of firms’ systemic importance and
GDP volatility. The method reconstructs the distribution of microscale quantities reasonably well
but shows diverging results for the measures of firms’ systemic importance. Due to the network
structure of supply chains and the sampling process of firms and links, quantities relying on the
number of customers firms have (out-degrees) are harder to reconstruct. We also reconstruct the
input-output table of globally listed firms and merge it with a global input-output table at the
sector level (the WIOD). Differences in accounting standards between national accounts and firms’
financial statements significantly reduce the quality of the reconstruction.

Keywords: Network reconstruction, supply chain, production network, input-output table, maxi-
mum entropy, missing information
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1 Introduction

Recent events, such as the war in Ukraine and the evermore frequent natural disasters, have highlighted
the fragility of global supply chains. Shocks to individual firms or a cluster of firms, sometimes located
in a particular geographical region, can quickly spread through the network with severe repercussions
on the global economy. Most of the research has so far been conducted at the sector level (Acemoglu
et al., 2012; Carvalho, 2014; Pichler and Farmer, 2021). However, analysing such shocks at the level
of sectors can lead to misleading results (Diem et al., 2022). The value of firm-level data is thus
increasingly recognised, but research efforts are constrained by data availability.

Due to confidentiality and the data collection process, supply chain data are scarce, hard to ac-
cess, and frequently incomplete. Countries collect the best data sources through VAT filings, but
only a handful of countries collect them (for a comprehensive review and discussion of the different
datasets Bacilieri et al., 2023). Some datasets of broader global coverage derived from US disclosure
requirements are available. Given their wider breadth of coverage and relatively easier access, such
datasets are used in many studies (e.g., Wu, 2016; Wang et al., 2021; Pankratz and Schiller, 2019;
Taschereau-Dumouchel, 2020; Boehm and Sonntag, 2022; Barrot and Sauvagnat, 2016; Atalay et al.,
2011; Herskovic et al., 2020). In contrast to national datasets, which report the monetary values of the
transactions (i.e., the weighted network), global datasets do not provide this valuable information.

Reconstructing firm-level production networks is thus an important topic, showing growing research
interest. The reconstruction problem concerns mainly two features of the production network: supplier-
customer relations and transaction values. Several studies develop methods to infer both links and
transaction values (Reisch et al., 2021; Ialongo et al., 2022; Hooijmaaijers and Buiten, 2019; Hillman
et al., 2021) or links only (Brintrup et al., 2018; Mungo et al., 2022; Kosasih and Brintrup, 2022),
and two focus on inferring weights given the binary topology (Inoue and Todo, 2019; Welburn et al.,
2020). The assessment of the quality of the weights reconstruction is usually missing and sometimes
carried out on aggregate quantities or compared to empirical facts about another country’s network.

In this paper, we focus on reconstructing the transaction values using partial information on the
supply chain relations and aggregate information about firms’ revenues and expenditures. We provide
a rigorous assessment of a recently developed maximum entropy reconstruction method (Parisi et al.,
2020) using the administrative dataset of Ecuador. We evaluate the method on microscale, higher-order
and macroscale quantities that are widely used in economic input-output (I-O) models.

We assess the method’s performance at recovering the link weights, and the technical and alloca-
tion coefficients (i.e., normalised weights). We also use two indicators of firms’ systemic importance,
the output multipliers and the influence vector, that are prominent in macroeconomic I-O models
of shock propagation. While the reconstruction method reproduces the weights (normalised or not)
rather poorly, it reconstructs their distributions reasonably well. In contrast, the reconstruction shows
diverging results for higher-orders quantities: the output multipliers are in remarkable agreement with
the empirical values, while the influence vector is overestimated. We then use a general equilibrium
I-O model (Acemoglu et al., 2012) to assess how shocks to firms’ total factor productivity (TFP) prop-
agate through the network, ultimately affecting aggregate GDP fluctuations. We show that aggregate
volatility is overestimated by the reconstruction method we employ.

Our results suggest that quantities relying more prominently on the number of customers firms
have are more adversely affected by missing firms and links due to the structure of supply chain
networks (Bacilieri et al., 2023) and the sampling process underpinning the observed firms and links.
We also find that including a proxy node, to represent the rest of the economy that is not captured
by the network, is of help in predicting microscale and higher-order quantities but not for predicting
aggregate volatility.

An additional contribution we make in this paper is to construct the I-O table of globally listed
firms using the dataset collected by FactSet. We merge FactSet with the World Input-Output Database
(WIOD). Key challenges related to differences in accounting standards between national accounts and
firms’ financial statements prevent us from (1) merging the two datasets at the desired country-sector
or even sector level, and (2) carrying out an accurate quantification (at the firm level) of the key
variables making up an I-O table. We then reconstruct and compute weights, coefficients and higher-
order quantities for FactSet as well. The inability to accurately quantify the variables of the I-O table
at the firm level dramatically reduces the quality of the final dataset and thus of the reconstruction.

The remainder of the paper is organised as follows. In Section 2, we explain the notation and
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define the production network at the firm level. In Section 3, we discuss the two datasets we use. In
Section 4, we review the literature on network reconstruction, briefly describe the maximum entropy
method we employ and the metrics we use to assess the performance of the reconstruction method. We
then show and discuss the results for microscale, higher-order and macroscale properties for Ecuador
and FactSet. Section 4.5 shows results for different numbers of unknown links and Section 5 concludes.

2 Firm-level input-output tables

This section describes firm-level production networks and gives an example of the supply chain network
of publicly listed firms we aim to reconstruct. We then explain I-O tables and outline key differences
between I-O tables at the sector and firm level.

The production or supply chain network is composed of N firms (nodes) and links between firms
indicate yearly trading relationships. Links may be weighted, where each weight wij represents firm j’s
intermediate input expenditure on goods produced by i. We label the weighted adjacency W and A
the binary adjacency matrix. Figure 1 shows the binary (left) and weighted (right) adjacency matrices
depicting the empirical data collected by FactSet. Both matrices have on the i-th row the customers
of firm i, while column j lists the suppliers of the j-th firm. The unknown weights are labelled as
question marks. Given A (and other aggregate information about firms that we outline below), we
aim to reconstruct W .

A =


0 1 0 1
0 0 1 0
1 0 0 1
1 1 0 0

 W =


0 ? 0 ?
0 0 ? 0
? 0 0 ?
? ? 0 0


Figure 1: Example of the data we aim to reconstruct. Left: Binary directed adjacency matrix. Right: Weighted
directed adjacency matrix.

For each firm, we can define its (total) intermediate expenditure and sales as, respectively, the
column and row sums of the weighted adjacency matrix. The column and row sums are also called the
weighted in- and out-degrees or in- and out-strengths; they are given by

sin = W⊤1, and (1)

sout = W1, (2)

where 1 is a vector of ones of appropriate size.
The supply chain network just described captures only a part of the economic activity, namely

firm-to-firm trades. Transactions with other economic actors (e.g., households) are captured in an
input-output table, usually at the sector level. One can also define an input-output table at the firm
level, however with notable differences. For a more in-depth discussion, we refer to Appendix A.3 and
Bacilieri et al. (2023).

In I-O studies of production networks, the weighted adjacency matrix is usually normalised using
firms’ total costs instead of their in-strengths. A firm’s total costs are the costs of intermediate inputs
plus value-added, which is itself composed of labour costs, depreciation, amortisation and profit (see
Appendix A.1.3). The weights so normalised are called the technical coefficients and represent the
percentage of inputs firm j buys from firm i. The technical coefficients are given by

Tij =
Wij∑

iWij + yj
, (3)

where yj is value-added of firm j.
Similar to the technical coefficients, one can define the allocation coefficients, B. Bij tells us the

percentage of output firm i sells to firm j. Letting fi be the amount of final demand satisfied by firm
i, the allocation coefficient is defined as

Bij =
Wij∑

j Wij + fi
. (4)
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3 Data

FactSet is the global production network that we aim to reconstruct and for which we do not know
the values of the monetary transactions. Therefore, we test the reconstruction method on the admin-
istrative dataset of Ecuador, for which we know the monetary values of the transactions.

3.1 FactSet

We use three primary data sources provided by FactSet: Fundamentals, Supply Chain Relationships
and Supply Chain Shipping Transactions.1 FactSet covers mainly listed firms around the world. The
supply chain relationships of these companies are collected through two primary sources: company
filings required by US Federal Accounting Standards (Supply Chain Relationships) and import and
export declarations at ports from the US Bill of Lading (Supply Chain Shipping Transactions).2

FactSet also collects information on supply chain relationships from investor presentations, company
websites and press releases. Due to the nature of the data collection process, coverage is biased toward
companies listed on US stock exchanges, large firms and large transactions. For a more detailed
description of FactSet see Appendix A.1 and Bacilieri et al. (2023).

We aggregate customer-supplier relations within a fiscal year to ensure time consistency between
the formation of supplier-customer relations and financial statements.3 We further aggregate all three
datasets at the parent company level. For each company, we also have information on the sector (NACE
Rev.2 codes at the 4-digit level) and the country where the company’s headquarters are located.

We use several variables from companies’ income statements (FactSet Fundamentals): revenues,
the cost of goods sold, labour expenses, earnings before interest and taxes (EBIT), depreciation and
amortisation. We convert all the variables to USD using the currency conversion tables provided by
FactSet. We define value-added as the sum of labour expenses, EBIT, amortisation and depreciation
(Appendix A.1.3). Some firms do not disclose their labour costs and include them in the costs of goods
sold; we estimate these firms’ labour expenses (see Appendix A.1.2).

For simplicity, we limit ourselves to the 2014 network, which we call henceforth “FactSet”. We
keep firms with positive sales, intermediate expenses and value-added, and with non-negative labour
costs (see Appendix A.1.4). We exclude firms in financial and insurance, extraterritorial organisations
and bodies and activities of households as employers. The number of firms in the 2014 cleaned dataset
is 5,442; these are involved in 15,916 trading relations. The average degree is 2.9.

Evaluation of coverage and proxy node. In 2014, FactSet captures around 16.4% of world gross
output as reported in the WIOD (see Appendix A.2.4). To capture the rest of the economic activity
that we do not capture in FactSet, we introduce a “proxy” node in the network to which all firms are
connected. We construct the proxy node’s variables (gross output, intermediate sales and expenditure,
etc.) using the WIOD aggregated at the world level.

A good approach would be to integrate FactSet with the WIOD at the country and sector level.
However, due to differences between national accounting standards and firms’ financial statements,
we had to aggregate the WIOD at the world level. We refer to Appendix A.3 for a detailed discussion
of how we integrated the two datasets.

3.2 Ecuador

Ecuador collects customer-supplier relations through VAT filings, which are mandatory for firms and
natural persons. We do not have access to firms’ financial statements, so we do not know their revenues,
labour costs or profit, but we know the sectors’ firms are in (ISIC Rev. 4 codes). The Ecuador dataset
was provided by Ecuador’s government to one of the authors. We refer to Astudillo-Estevez (2021)
and Bacilieri et al. (2023) for more information about the dataset.

1The datasets were downloaded in April 2020.
2The Statement of Financial Accounting Standards No. 131 requires publicly traded firms on US stock exchanges to

report customers that account for 10% or more of their annual revenues, formally called major customers.
3The fiscal year goes from June to May, meaning that if a company’s fiscal year end-month falls between January and

May, the fiscal year is the current calendar year minus one; otherwise, it is the current calendar year.
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Constructing the test network. While Ecuador’s dataset has comprehensive coverage, FactSet
does not. Therefore, we construct a test network that mimics the missing firms and links in FactSet.
To mimic the missing firms in FactSet, we keep the same number of firms in Ecuador that we have in
FactSet. We choose to keep the largest firms (in terms of out-strength) since we observed predominantly
large firms in FactSet. We also require firms to have positive in-strengths, meaning that firms need
to buy some inputs from the other firms in the subgraph.4 The resulting network, which we call “test
network” (third column in Table 1), has a much higher average degree compared to FactSet, meaning
that the average Ecuadorian firm is connected to many more firms than the average firm in FactSet.

To mimic the missing links in FactSet, we eliminate links at random in the “test network” until we
match FactSet’s average degree. Since FactSet’s supply chain relations mostly cover customers that
account for 10% or more of a firm’s annual revenues, we delete links with a smaller weight with a
higher probability: we set the link deletion probability to be inversely proportional to the link weight
pij ∝ 1/Wij . We do this procedure 50 times and reconstruct each of the 50 randomised networks. The
summary statistics for these networks, which we call “trimmed test network”, are shown in the last
column of Table 1. In deleting links to match FactSet’s average degree, 96% of the links among firms
in the test network are deleted. Consequently, our results can be interpreted as an approximate lower
bound on the quality of the reconstruction.

We aggregate the firms and transactions left out of the test network in one proxy node representing
the rest of the economy. As done for FactSet, we establish an incoming and outgoing link between
each firm and the proxy node.

Summary statistics Full network Test network Trimmed test network

N. nodes 84,978 5,440 5,440

N. edges 3,439,975 432,910 15,776

Average degree 40.5 79.6 2.9

Table 1: Summary statistics for the 2014 Ecuador network. The first column “Full network” is the network
composed of all the firms except those in sectors: finance, insurance, activities of households as employers,
activities of extraterritorial organisations and bodies, and those that have no sectoral code. The third column,
“Test network”, refers to our test network, which is composed of the top 5,440 firms with the largest total
intermediate sales and positive intermediate expenses. The last column “Trimmed test network” refers to the
network built from the “Test network” by further deleting links at random to match FactSet’s average degree.
The summary statistics of the test and trimmed test network do not include the proxy node.

Inferring missing data. For Ecuador, we do not have information on final demand, revenues and
the variables that compose value-added (i.e., labour costs, depreciation, amortisation and profits). To
carry out the analyses described in Section 4.2, we need final demand and value-added of each firm.
Therefore, we simulate final demand and value-added using the 2014 I-O table of Ecuador at the
sector level.5 Consider value-added (a similar procedure is done for final demand), for each sector s,
we calculate the ratio of value-added to intermediate expenditure νs = ys/s

in
s . Assuming that a firm’s

ratio is the same as that of the sector the firm is in, a firm’s value-added is given by yi = νs · sini .

4 Network reconstruction

Methods for reconstructing networks with missing information have mostly been developed for finan-
cial or trade networks (e.g., Moussa, 2011; Mastrandrea et al., 2014; Cimini et al., 2015b; Gandy and
Veraart, 2017; Anand et al., 2015) and I-O tables at the sector level (e.g., Golan et al., 1994; Robinson
et al., 2001; Lenzen et al., 2009). Only a few studies develop methods for reconstructing firm-level
production networks (Inoue and Todo, 2019; Welburn et al., 2020; Reisch et al., 2021; Hooijmaaijers
and Buiten, 2019; Ialongo et al., 2022; Hillman et al., 2021). We start with a brief overview of the
different reconstruction methods developed in the literature, which we divide into deterministic and

44 firms are further dropped because they do not have any links with the other firms in the sampled subgraph.
5The sector-level I-O table is available at https://contenido.bce.fin.ec/documentos/PublicacionesNotas/Catalogo/

CuentasNacionales/Anuales/Dolares/MenuMatrizInsumoProducto.htm.
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ensemble methods, and subsequently give a more detailed account of the methods developed to re-
construct firm-level networks. We refer to Squartini et al. (2018) and Cimini et al. (2021) for reviews
on reconstruction methods developed mostly for financial and trade networks, and to Miller and Blair
(2009), McDougall (1999) and Lahr and De Mesnard (2004) for reviews on sector-level reconstruction
methods and matrix balancing problems.

The network reconstruction problem, being it for financial, trade or production networks, boils
down to inferring a matrix of bilateral flows among entities (e.g., banks, countries or sectors) given
constraints on the total in- and out-flows of each entity and other information when available (e.g., de-
grees or a prior bilateral flows matrix). Most of the reconstruction methods are based on the maximum
entropy principle, of which there are two strands: deterministic and ensemble methods. Deterministic
methods yield a single reconstruction of the weighted network while meeting the constraints exactly.
Instead, ensemble methods sample many networks from a distribution that is constructed to respect
the constraints on average. Therefore, while ensemble methods generate a probability distribution over
the likely networks, deterministic methods assign a probability of one to the reconstructed network
and a zero probability to all the other networks – which likely include the true network (Parisi et al.,
2020). The shortcomings that most deterministic and ensemble methods share are that they tend to
create a fully connected network with weights distributed as uniformly as possible given the imposed
constraints on the in- and out-flows. To create sparser networks, algorithms with tunable (Moussa,
2011; Upper, 2011; Mastromatteo et al., 2012) or exact network density (Mastrandrea et al., 2014;
Cimini et al., 2015b) have been developed.

The most well-known deterministic method is known as MaxEnt. It maximises an entropy-like
functional subject to constraints on the in- and out-strength of each node. The solution to this max-
imisation yields the well-known gravity model (without distance) in the international trade literature
(first proposed by Tinbergen, 1962 and Pöyhönen, 1963; see also Squartini and Garlaschelli, 2014 for
a discussion). MaxEnt displays all the shortcomings mentioned above: it generates a fully connected
network and the weights are distributed as equally as possible given the constraints. To enhance the
MaxEnt reconstruction, if some prior information about the binary topology or the weights is available,
it can be integrated using a cross-entropy method (Golan et al., 1994; Di Gangi et al., 2018; Upper,
2011; Wells, 2004). The cross-entropy method reconstructs a network that has minimum distance to
the prior while accounting for the imposed constraints. The cross-entropy method is equivalent to the
iterative proportional fitting (IPF) algorithm, which iteratively distributes the weights (coming from
the MaxEnt solution or any other prior) among the non-zero edges until the row and column sums
are satisfied. The IPF algorithm is also known as the RAS technique in the I-O literature (Miller and
Blair, 2009). If the network is fully connected, the IPF algorithm is equivalent to MaxEnt.

There are different ensemble methods depending on the information used for the reconstruction
(e.g., in- and out-degrees or strengths sequences). We discuss the method developed by Cimini et al.
(2015b) since it is one of the best performing (Anand et al., 2018; Lebacher et al., 2021). To enhance
the reconstruction of the weighted network, Cimini et al. (2015b) impose constraints on both the
in- and out-strength sequences and on the degrees. Their strategy is motivated by recent results
showing that the strengths do not encode information about the binary topology (although they are
correlated with degrees) and that the degrees are “fundamental” local structural properties of weighted
networks (Mastrandrea et al., 2014). Combining constraints on the degrees and strengths thus greatly
enhances the reconstruction of weighted networks since the degrees provide information about the
binary topology that strengths do not, enabling to identify better the matrix of link probabilities as
well as higher-order properties (Mastrandrea et al., 2014; Gandy and Veraart, 2017).

The method proposed by Mastrandrea et al. (2014) requires knowledge of the degrees and strengths
of all the nodes, which are not always available. Cimini et al. (2015b) note that in financial networks,
the in- and out-strengths are usually known while the degrees might be known for a subset of nodes
only. To account for these two pieces of information, Cimini et al. (2015b) restore to the fitness
ansatz. The fitnesses are nodes’ non-topological futures that relate to the ability of nodes to establish
connections: nodes with higher fitness attract more connections and are thus likely to become hubs
(Squartini et al., 2018; Mazzarisi and Lillo, 2017). Given the empirical correlation frequently observed
among strengths and degrees, strengths are often used as a proxy for nodes’ fitnesses. To estimate
the binary topology, Cimini et al. (2015b) thus develop a fitness-induced configuration model that
estimates link probabilities using the nodes’ fitnesses and the degrees of only a few nodes. The weights
are estimated in a second step using a degree-corrected gravity model that accounts for the sparsity
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of the adjacency matrix inferred in the first step.
How does one choose which reconstruction method to use? Anand et al. (2018), Lebacher et al.

(2021) and Ramadiah et al. (2020) find that the choice of the reconstruction method ultimately de-
pends on the feature of the network one aims to reconstruct, which usually boils down to connectivity
structure versus weights. If one cares about inferring links, methods that focus on reconstructing a
sparse connectivity structure are better suited. Anand et al. (2018), Lebacher et al. (2021) and Maz-
zarisi and Lillo (2017) conclude that the best-performing ones are the degree-corrected gravity model
(Cimini et al., 2015b), the minimum density (Anand et al., 2015) and the Bayesian hierarchical fitness
(Gandy and Veraart, 2017). If one cares about inferring the link weights, methods based on MaxEnt
or the IPF algorithm perform best. Since financial networks have many link weights of relatively equal
size (something that is less likely to be the case in firm-level networks; Bacilieri et al., 2023), they score
well on weight-based similarity measures (Anand et al., 2015). In their horse races, Anand et al. (2018)
and Lebacher et al. (2021) identify the methods developed by Cimini et al. (2015b) and Baral and
Fique (2012) to be the best performing. Altogether, the reconstruction method proposed by Cimini
et al. (2015b) seems to be the best in reconstructing both binary and weighted topological features.

Firm-level network reconstruction. Welburn et al. (2020) reconstruct the network of listed firms
in the US available through a dataset similar to FactSet but covering only their major customers.6

Therefore, they know the binary topology only partially. To reconstruct the weighted network, they
use a two-step procedure. In the first step, they infer missing links using a logistic regression. In the
second step, they develop a linear programming method to reconstruct the unknown weights given the
links. Since they do not observe the whole economy, they introduce a proxy node that captures the
rest of the economy and to which each firm is linked. The cumulative in- and out-flows of the proxy
node are then minimised subject to constraints on firms’ revenues and the cost of goods sold. While
there are almost 6,000 firms in their network, they only reconstruct the network composed of 1,000
firms due to the high computational complexity of the second step of their procedure. Inoue and Todo
(2019) reconstruct the weighted network of Japanese firms given the binary topology.7 Firstly, they
assume that the link weight is proportional to the supplier and customer’s sales. Subsequently, they
re-adjust the estimated weights using the sector-level I-O tables to ensure that if the firm-level network
is aggregated at the sector level, it is consistent with national accounts. In a similar fashion and using
the same Japanese dataset, Carvalho et al. (2021) assume that the technical coefficient between two
firms is proportional to the technical coefficient between the sectors those two firms are in.

Hillman et al. (2021) reconstruct the global network of private and public firms in the ORBIS
database. As done in other reconstruction methods, they build the firm-level network so that it is
consistent with sector-level I-O data (OECD). In each step, a firm i is chosen at random and its sales
are split into n units that are then sold to n different customers. i’s customers are chosen according
to the industry they are in based on sector-level I-O tables, meaning that if firm i is in industry
s, its customers need to be in one of the industries to which s sells (in the sector-level I-O table).
They further calibrate their model on the observation that larger firms tend to have more customers
(Bernard et al., 2019). This feature can be controlled by changing how, at the beginning of each step,
firm i’s sales are split into n units. For computational reasons, they only use 5,000 firms among the
more than 200 million firms in the Orbis database. Hooijmaaijers and Buiten (2019) reconstruct the
supply chain network of the Netherlands using several microdata sources available to the Office of
National Statistics. They describe their method as being akin to maximum entropy methods with
exact link density (as classified in Squartini et al., 2018), but they pose additional constraints thanks
to the richness of their microdata and to findings in the literature about empirical facts of firm-level
supply chain networks. A novel feature of their reconstruction is the disaggregation of firms’ output
into different goods.

None of the studies just described can assess how well their method recovers the empirical weighted
network because none of them has access to it. Two studies assess their reconstruction method, at least
to some extent. First, Reisch et al. (2021) reconstruct a firm-level production network using mobile
communication data. To guarantee anonymity, the company providing the data and the country are

6They retrieved the customer-supplier relations from firms’ filings available through the EDGAR database.
7The network is collected by a private company. Although the coverage is extensive, comprising almost 890,000 firms,

it is not exhaustive.
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not disclosed. Roughly speaking, links are inferred by assuming that if two firms communicate with
each other, they are involved in a supply-chain relationship. To determine the link direction, they use
the national I-O table at the sector level and information about the sectors the customer and supplier
are in. A gravity model is then used to estimate the link weights, where a firm’s size is given by its total
assets. To assess the reconstruction of the binary topology, they compare to the Hungarian network,
whereas to assess the performance of the method regarding the weights reconstruction, they use the
Economic Systemic Risk Index and compare with results obtained for Hungary by Diem et al. (2022).
They find similarities between results obtained for Hungary and their reconstructed network. Second,
Ialongo et al. (2022) develop the stripe-corrected gravity model, which builds on the degree-corrected
gravity model (Cimini et al., 2015a) by adding constraints on the in-strength of each industry. They
test their method on two transaction data made available by two Dutch banks. The assessment is
carried out on the degree and strength distributions, degree-strength correlations and average nearest
neighbour strength.

4.1 Method

To reconstruct the weighted network given the binary topology, we use the conditional maximum
entropy ensemble reconstruction method developed by Parisi et al. (2020). We do not use any of
the previously developed methods for reconstructing firm-level networks because either they are too
computationally expensive (Welburn et al., 2020; Hillman et al., 2021), demand too many data inputs
that we do not have (Hooijmaaijers and Buiten, 2019) or would imply constraining the firm-level
network with sector-level I-O tables (Inoue and Todo, 2019; Ialongo et al., 2022). We disregard the
latter methodologies because we think using sector-level data in the way proposed by Inoue and Todo
(2019) or in the spirit of Ialongo et al. (2022) could bias the reconstruction in unwanted ways given
the underlying differences in accounting standards between national I-O tables and firms’ financial
statements (see Appendix A.3, but also Bacilieri et al., 2023).

Parisi et al. (2020) develop a maximum entropy method that reconstructs an ensemble of likely
weighted networks given some prior information about the binary ensemble and aggregate information
about each node. The procedure is flexible in that it allows to use of an observed binary topology or
to infer it in a previous step and account for the additional uncertainty. They proposed two methods
that use different constraints. One method constrains the in- and out-strength sequences, while the
other one constrains the expected link weights (and the in- and out-strengths indirectly). We choose
the second method for two reasons. First, it is computationally more efficient since it involves solving
m (the number of links) decoupled equations, while the method constraining the in- and out-strengths
require solving 2N coupled equations, where N is the number of firms. Second, the authors show that
it predicts the weights better compared to the model constraining the in- and out-strengths.

The method consists of two steps. The first step constrains the in- and out-strengths (total inter-
mediate expenditure and sales) of each firm and determines the values of the expected link weights
used as constraints in the second step. As discussed in Section 4, MaxEnt reconstructs the weights best
among the other methods (Anand et al., 2018; Lebacher et al., 2021); thus, MaxEnt is used in the first
step. The second step allows us to account for any prior information about the binary topology and
generates an ensemble of weighted networks compatible with this information and with the constraints
on the expected link weights.

As discussed, MaxEnt assumes a fully connected network; however, the conditional maximum
entropy method assumes no self-loops. Additionally, in our case, we know the binary topology. To
redistribute the weights corresponding to Aij = 0, ∀ (i, j) /∈ E , where E is the edge set, we employ
the IPF algorithm. The IPF algorithm redistributes the weights in an iterative procedure until the
constraints on the in- and out-strengths are met (see Appendix B.1). Parisi et al.’s (2020) method
turns the IPF algorithm into a probabilistic method and allows calculating confidence intervals around
each reconstructed weight. We give a brief outline of the method below and describe it in detail in
Appendix B.1.

First step. The method derives values for the expected link weights to enforce as constraints in the
second step. The values of the weights are derived by solving the MaxEnt problem, which maximises
an entropy-like functional subject to constraints on intermediate sales and costs of each firm. The
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value of each weight is given by

WME
ij =

sout
∗

i sin
∗

j

W tot∗
,

where W tot∗ =
∑

i s
out∗
i =

∑
j s

in∗
j is the total weight of the empirical network.

Second step. The method maximises the conditional entropy defined over the probability density
function of the weighted networks compatible with the prior on the binary ensemble and subject to
constraints on the expected weights. Solving the conditional maximum entropy problem yields that the
probability of observing a weight Wij > 0 given that there is a link between i and j is of exponential
form with parameter λij (which also corresponds to the Lagrange multiplier):

Qij(Wij | Aij = 1) = λije
−λijWij , Wij > 0. (5)

To find the values of the λij ’s, one maximises the log-likelihood function, which leads to the first order
conditions

⟨Wij⟩ =
pij
λij

, ∀ i ̸= j. (6)

Since for each link the expected weight ⟨Wij⟩ = WME
ij , the Lagrange multipliers are given by

λ∗
ij = pij

W tot∗

sout
∗

i sin
∗

j

, ∀ i ̸= j. (7)

We set pij = 1,∀(i, j) ∈ E .

Confidence interval on the expected edge weight. For each expected weight, the confidence
interval is [w−, w+]. The lower bound is given by

w− = − ln[e−1 + q−]

λ∗
ij

, (8)

where q− is a desired confidence level and the upper bound is given by

w+ = − ln[e−1 − q+]

λ∗
ij

. (9)

We set q+ = q− = 0.25. We refer to Appendix E in Parisi et al. (2020) for the derivation.

4.2 Assessing the reconstruction

We assess how well the reconstruction method can recover the empirical network at three scales. First,
we look at microscale quantities: weights, and technical and allocation coefficients. Second, we evaluate
the reconstruction of higher-order properties (i.e., multipliers): the output multipliers and the influence
vector. Third, we turn to macroscale properties and use a general equilibrium I-O model to study how
the propagation of shocks through the network affects GDP volatility. We conclude this section by
defining the statistical indicators used to compare the empirical and reconstructed quantities.

4.2.1 Weights

As discussed in Section 2, technical and allocation coefficients (Equation 3 and 4, respectively) are
normalised weights frequently used in economic models. Therefore, we assess the reconstruction of
both coefficients and the weights: their exact values and their distributions.

4.2.2 Higher-order properties

We look at two higher-order properties widespread in the economic literature: the output multipliers
and the influence vector. These are two centrality measures that quantify firms’ contributions to
economy-wide fluctuations.
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The output multipliers. The output multipliers are derived from the Leontief model (Miller and
Blair, 2009) and are defined as

O ≡ (I − T⊤)−11 , (10)

where I is the identity matrix and 1 a vector of ones, both of appropriate size. The output multiplier
captures the upstream propagation channel of an exogenous shock to a firm’s final demand and its
economy-wide impacts (where final demand increases by one monetary unit; Miller and Blair, 2009).
It can also be seen as the average length of a firm’s production chain (McNerney et al., 2022; Fally,
2012; Miller and Temurshoev, 2017). The higher the output multiplier is, the longer the production
chain is on average and the greater the impact of a change in a firm’s final demand is on the whole
economy.

The influence vector. The influence vector is derived from the Cobb-Douglas model proposed by
Acemoglu et al. (2012). The influence vector is defined as

v ≡ α

N
[I − (1 − α)Ω]−11 , (11)

where Ω is the matrix of input shares with ωij ∈ [0, 1] being the share of input i used in j’s production
process (

∑
i ωij = 1), α ∈ (0, 1] is the share of labour and N is the number of firms.

Contrary to the output multipliers, the influence vector captures the downstream propagation
channel of TFP shocks and it gauges the contribution of firms to fluctuations in aggregate GDP.
Positive TFP shocks can be thought of as firms’ innovating their production processes and becoming
more efficient in using their inputs. The influence vector is equivalent to a Reverse Weighted PageRank
with a damping factor equal to (1 − α).

4.2.3 Macroscale properties

As highlighted by recent crises and natural disasters, assessing how different shocks affect the economy
is of paramount importance to be better prepared in preventing or alleviating crises. Therefore, after
assessing the weights and the multipliers, we study how supply-side shocks at the firm level propagate
through the network to downstream firms, ultimately leading to fluctuations in aggregate GDP.

Supply-side shocks and aggregate volatility. We model supply shocks as shocks to firms’ TFP.
We use the model developed by Acemoglu et al. (2012) and refer to the paper for a derivation. In the
competitive equilibrium, aggregate volatility is given by

σ∆y =

√∑
i

Var(∆ϵi)v2i , (12)

where vi is the influence of firms i (Equation 11), ∆ϵi is the TFP shock of firm i and ϵi is an i.i.d.
random variable with mean zero and bounded variance. Equation 12 shows that productivity shocks
at the firm level affect aggregate value-added through the production network. Initially, the shock
propagates to the customers of the affected firm and, subsequently, propagates downstream to the
customers’ customers and so on, potentially spreading through the whole supply chain network.

Note that the model gives a static representation of the economy in equilibrium and firms’ input
shares are exogenous; therefore, the network structure and hence the influence vector are constant
over time. We use Equation 12 to assess the impact of firms’ TFP shocks on GDP volatility using
either the empirical or the reconstructed weighted network given the TFP shocks.

Simulating TFP shocks. To estimate TFP shocks, we cannot use an econometric technique (e.g.,
Magerman et al., 2016) because it requires knowledge of several variables that we do not observe for
Ecuador. Besides requiring all the variables describing a firm’s production function, the estimation of
TFP requires a time series of these variables. Since our goal is not to empirically validate the economic
model but to assess the discrepancy in the predicted GDP volatility when the reconstructed influence
vector is used instead of the empirical one, we simulate firm-level TFP shocks. For FactSet, we do not
perform this test since it would entail estimating TFP, which is outside of the scope of this paper.
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We simulate TFP shocks from a normal distribution with mean zero and standard deviation of 6.
We chose a zero mean in line with the empirical mean reported for the Belgian production network
by Magerman et al. (2016). Since they do not report the variance, we set the variance to 6 so that
GDP volatility, calculated using the model with the true network, matches the observed country-level
volatility.8 We set the TFP shock of the proxy sector equal to the median of the TFP shocks of firms
that were excluded from our test network. We simulate 10 time periods. Figure 2 shows the distribution
of the simulated TFP growth rates in Panel (a) and the distribution of their standard deviation in
Panel (b). Once we simulate the TFP volatilities, we use Equation 12 to predict the fluctuation in
aggregate GDP using either the empirical or the reconstructed influence vector. We then compare the
empirical volatility with that predicted by the reconstruction.

Figure 2: Distribution of TFP (a) growth rates and (b) their standard deviation. The growth rates are pooled
over the 10 simulated years. We binned the data into 50 equally-spaced bins.

4.2.4 Statistical indicators

To compare how well the reconstruction method can recover the quantities defined in Section 4.2.1,
4.2.2 and 4.2.3, we employ metrics that are standard in the literature: the L1-error, the root-mean-
squared error (RMSE), the mean and median absolute error (MAE and MedAE, respectively) and the
cosine similarity.

The L1-error assesses the degree to which constraints on intermediate sales and costs are violated.
It is defined as

L1 =
∑
i

|sini − sin
∗

i |+
∑
i

|souti − sout
∗

i | ,

sini is firm i’s in-strength in the reconstructed network and souti its out-strength in the reconstructed
network; quantities with a ∗ refer to observed, empirical values.

In what follows, we define the error measures using the technical coefficients, but they similarly
apply to any other quantity of interest. We do not use the RMSE, the MAE and the MedAE to assess
the raw weights because their distribution has heavy tails. For the technical and allocation coefficients,
and the multipliers, we further normalise the metrics to allow their comparison across variables that
have different scales. We rescale by ϕ, the difference between the maximum and minimum value
(excluding the zeros) of the empirical quantity of interest. Our rescaled measures compare the variation
in the residuals to the range of the empirical data. For instance, a normalised RMSE of 0.1 means
that the variation in the residuals is 10% of the range of variation of the empirical data. The lower the
normalised error metric is, the better the reconstruction is. The normalised root-mean-square error is
given by

RMSE =
1

ϕ

√
1

m

∑
ij

(Tij − T ∗
ij)

2 ,

8To calculate the GDP volatility in Ecuador, we use data from the IMF; available at https://data.imf.org/?sk=
388DFA60-1D26-4ADE-B505-A05A558D9A42&sId=1479331931186. We use nominal GDP since our data are not ad-
justed for inflation. Since we simulate 10 years, we calculate GDP volatility for the period 2005-2015, which is 6.35%.

We tried different parametrisations of the normal distribution, which do not match the volatility in the empirical data,
and results do not change, at least qualitatively.
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where m is the number of links. The normalised mean absolute error is given by

MAE =
1

ϕm

∑
i,j

|Tij − T ∗
ij | .

The normalised median absolute error is defined as

MedAE =
Median

(
|T − T ∗|

)
ϕ

.

The cosine similarity is defined as

ϑ =

∑
ij T

∗
ijTij√∑

ij T
∗2
ij

√∑
ij T

2
ij

.

4.3 Results: link weights

In this section, we show the results of the reconstruction method for the weights, and the technical
and allocation coefficients. We start by discussing the results for our test network, Ecuador, and then
show the results for FactSet, for which we do not know the ground truth.

We compare weights (normalised or not) for firms only and not those of the proxy node since
the proxy node can be thought of as a sink node and does not meaningfully represent either a firm
or a sector. For parsimony, we show plots for one of the 50 randomised reconstructions (always the
same one throughout the paper) since they all yield virtually identical results; the same holds for the
summary statistics. Regarding the statistical indicators described in Section 4.2, we compute them
for each of the 50 randomised test networks and report the average value of each metric across the 50
randomised networks.

4.3.1 Ecuador

The constraints on the intermediate sales and costs are always satisfied (L1-error = 10−4). The recon-
struction of individual weights is rather poor, as shown in Figure 3a; perfect prediction is achieved
when points lie on the 45-degree line (grey dashed line). The reconstruction method tends to under-
predict weights of high values and overpredict weights with intermediate or low values, although there
is significant dispersion. (We show the histogram of the relative prediction errors and the empirical
weights against their prediction errors in Figure C.2.) On average, 47% of the weights fall in the 50%
confidence interval (CI).

Although the reconstruction cannot recover individual weights particularly well, the weight dis-
tribution is recovered quite well. The weight distribution has heavy tails in both the empirical and
the reconstructed networks (Figure 3b; see Figure C.1a for a comparison of the weight distribution
across the 50 randomised networks, the empirical test network and the full network). As expected from
maximum entropy methods, the expected weight distribution is less heterogeneous than the empirical
distribution. Bacilieri et al. (2023) find that the weight distribution is likely to follow a power-law with
an exponent that varies between 1.0 and 1.4 depending on the country, year and estimation method.
Therefore, we check whether we can recover a similar power-law exponent. We can recover it pretty
well (see Figure C.1b). The power-law exponent is 1.1 for the empirical weight distribution and 1.3
for the reconstructed one.9 Although the exponent of the reconstructed distribution is slightly higher,
it still implies a divergent second moment.

9To fit a power-law distribution to our data, we use the method of Clauset et al. (2009) since (1) it yields a single
exponent estimate and (2) it is the most widely used estimator in the literature. See Bacilieri et al. (2023) for an in-depth
discussion. Bacilieri et al. (2023) use also the estimators developed by Voitalov et al. (2019), which are based on extreme
value theory. We abstain from such an analysis in this paper.
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Figure 3: (a) 2D histogram of the empirical (x -axis) and expected (y-axis) weights for Ecuador. We divide both
axes into 50 log-spaced bins and then count the number of data points falling in each square. Perfect prediction
is achieved when points lie on the identity line (dashed grey line). (b) CCDF of the empirical (black dots)
and expected (red triangles) weights for Ecuador. The shaded area represents the 50% confidence bounds. We
compute the CCDF as F̄n(x) = 1

n

∑n
i=1 1(Xi ≥ x), where 1 is the indicator function. Values are in USD.

In Table 2, we do not report the RMSE, MAE or MedAE for the weights since there is too
much variation to obtain a meaningful metric; additionally, the weights likely have a diverging second
moment. Therefore, we report only the cosine similarity, which is 0.93.

Type RMSE MAE MedAE Cosine similarity

Weight – – – 0.928

(0.006)

Technical 0.081 0.041 0.013 0.723

(0.001) (0.000) (0.000) (0.004)

Allocation 0.105 0.054 0.019 0.758

(0.001) (0.000) (0.000) (0.003)

Table 2: Statistical indicators for the weights, and the technical and allocation coefficients for Ecuador. As defined
in the main text, RMSE denotes the root mean squared error, MAE the mean absolute error and MedAE the
median absolute error. For each metric, we show its mean value across the 50 randomised reconstructions. Below
the mean value, the standard deviation in parenthesis. We excluded the proxy node from the calculations.

Figure 4a and 4c show, respectively, the empirical technical and allocation coefficients on the x -
axis and their expected values on the y-axis. As for the weights, the reconstruction method does
not perform particularly well in recovering either of the coefficients. Although less pronounced for
the coefficients than for the weights, the method tends to overpredict coefficients of small values
and underpredict coefficients with high values, again with considerable dispersion. This is further
highlighted in Figure 4b and 4d, showing the empirical and reconstructed CCDF of the technical
and allocation coefficients, respectively. Figure 4b and 4d further show that we can reconstruct the
technical coefficients better, which also have smaller error metrics (Table 2) and for which we can
recover the moments more accurately (Table 3). However, the cosine similarity is slightly higher for
the allocation coefficients: 0.76 compared to 0.72.
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Figure 4: (a), (c) 2D histogram of the empirical (x -axis) and the expected (y-axis) technical and allocation
coefficients, respectively, for Ecuador. We use 50 log-spaced bins and then count the number of data points
falling in each square. (b), (d) CCDF of the empirical (black dots) and expected (red triangles) technical and
allocation coefficients, respectively, in semi-log scale for Ecuador.

Technical coefficients Allocation coefficients

Empirical Expected Empirical Expected

Mean 0.037 0.038 0.071 0.065

Median 0.010 0.016 0.019 0.031

Standard dev. 0.067 0.057 0.132 0.088

Table 3: Summary statistics of the technical and allocation coefficients for Ecuador. For each coefficient, the first
column reports summary statistics for the empirical coefficients and the second column for the reconstructed
ones. We show results for one of the reconstructions; all three quantities have virtually the same summary
statistics across the 50 randomised empirical and reconstructed networks. We excluded the proxy node from the
calculations.
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4.3.2 FactSet

The constraints on the total intermediate expenditure and sales are satisfied (L1-error = 6 × 10−4).
Figure 5a shows the reconstructed weight distribution, which visually appears to have heavy tails. As
done for Ecuador, we fit a power-law distribution. The estimated power-law exponent is lower than
that recovered for Ecuador (1.0 for FactSet and 1.3 for Ecuador, see Figure C.3) and on the lower end
of what is observed for other supply chain networks (Bacilieri et al., 2023). The reconstructed technical
coefficients (Figure 5b) and allocation coefficients (Figure 5c) have a narrow range of variation and
tend to be much smaller than those reconstructed for Ecuador. For FactSet, the technical coefficients
reach a maximum value of approximately 0.008, while for the expected Ecuadorian network, they can
be as high as 0.570. Similarly, the allocation coefficients are not higher than ∼0.007 in FactSet, while
in Ecuador, they reach a maximum value of 0.778.

Figure 5: (a) CCDF of the expected weights, values in thousand USD. (b), (c) CCDF of, respectively, the
expected technical and allocation coefficients in semi-log scale for FactSet.

Given the data collection method of customer-supplier relations in FactSet, there is a bias towards
observing links with customers that account for 10% or more of a firm’s annual revenues. Therefore,
we would expect the CCDF of the allocation coefficients to have most of the mass around, or at the
very least include this 10% threshold. Instead, the maximum value is around 0.7%, well below this
threshold. The average expected allocation coefficient is 3×10−4 while the median is 8×10−5 (Table 4),
both of which are three to four orders of magnitude smaller than what we would have expected given
the data collection method.

Expected

Technical coefficient Allocation coefficient

Mean 2×10−4 3×10−4

Median 3×10−5 8×10−5

Standard dev. 5×10−4 6×10−4

Table 4: Summary statistics of the technical and allocation coefficients for FactSet.

All three quantities have a narrow range of variation and are smaller than expected because total
intermediate sales and expenditure of the proxy node (which represent the constraints that need to
be satisfied in the weights allocation) are much bigger than those of the other firms. The proxy node
accounts for 80% of intermediate expenditure and 75% of intermediate sales. To compare, in Ecuador,
the proxy node accounts for 29% and 14%, respectively. Therefore, in FactSet, firms make most of
their trades with the proxy node (Figure 6). The maximum transaction value for transactions between
firms and the proxy node is $407 million. But, the overall maximum is between the proxy node and
itself, where it is $48 billion, 3 orders of magnitude bigger than the maximum value among firms
as well as among firms and the proxy node. Consequently, the coefficients representing trades among
firms are much smaller than those representing the trades between firms and the proxy node, as shown
in Figure 6.
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Figure 6: Trades between firms and the proxy node. (a) Percentage of inputs that firms buy from the proxy
node (i.e, their technical coefficients with the proxy node). (b) Percentage of sales that firms make to the proxy
node (i.e., their allocation coefficients with the proxy node). (c) Weights among firms and the proxy node (in
both directions); values in thousand USD. We do not show quantities regarding trades of the proxy node with
itself. The red line marks the maximum value of the quantity among firms only.

4.3.3 Discussion

Since the other studies that reconstruct firm-level production networks do not assess how their network
reconstruction method performs on reconstructing weights, technical and allocation coefficients (Inoue
and Todo, 2019; Welburn et al., 2020; Hooijmaaijers and Buiten, 2019; Reisch et al., 2021; Ialongo
et al., 2022; Hillman et al., 2021), we cannot compare our results with these studies. Moreover, although
several studies assess network reconstruction methods on the international trade network (ITN) or
financial networks, few assess the reconstruction of the weights. Most of the studies look at higher-order
network properties or dynamic indicators of systemic risk, which we discuss in Section 4.4.

Table 5 shows a comparison of our results with those of the literature. Parisi et al. (2020) test
the reconstruction method on the ITN and the Electronic Market for Interbank Deposits (e-MID).
They find a similar percentage of empirical weights that fall in the 50% CI. For the e-MID network,
depending on the year, between 35% and 55% of the empirical weights fall in the 50% CI, while
around 30% of the weights fall in the 50% CI for the ITN. They find that the empirical and expected
link weights have a Pearson correlation of 0.50 for the e-MID and 0.75 for the ITN. The only other
study we could find providing a comparison metric for link weights is Ramadiah et al. (2020). The
authors test several reconstruction methods on Japan’s bipartite bank-firm credit network. For the
most disaggregated network, their reconstruction yields a cosine similarity of around 0.68 for the
MaxEnt method (for bi-partite networks) and of 0.63 for the configuration fitness model with weights
allocated using the IPF algorithm; these are lower than what we find for the weights but similar to
our results for the technical and allocation coefficients.

While the power-law exponent of FactSet’s weight distribution is in the ranges of what had been
found for other supply chain networks (Bacilieri et al., 2023), the reconstructed weights and coefficients
among firms are much smaller than expected. There are two main factors that deteriorate the quality
of the reconstruction and act mainly through the constraints on intermediate sales and expenditure:
the data cleaning procedure and the data imputations. On the one hand, the data cleaning procedure
implies that we had to exclude many firms from the network (see Appendix A.1.4); this leads to
(1) a higher share of the proxy node in the economy and (2) excluding many existing supply-chain
relations. On the other hand, the data imputations concerning final demand and labour costs affect
the values of firms’ intermediate sales and expenditures. Because firms report the cost of goods sold,
which often includes labour costs, we do not always know intermediate costs exactly. Similarly, firms
disclose their revenues (intermediate sales plus sales to final demand), so for all firms, we do not know
their intermediate sales exactly. As shown in Appendix A.1.2, labour costs tend to be overestimated.
Although we cannot test whether final demand is over or underestimated, we think we are very
likely overestimating it for the majority of firms. The main reason for overestimating final demand
is the use of national I-O tables at the sector level, which have a very different treatment of the
wholesale and retail sectors compared to firm-level data. National accounts treat wholesale and retail
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Data set Method Quantity Pct in 50% CI Measure Score Source

Ecuador SC CReM Weight 47% Cosine 0.93 This paper

Ecuador SC CReM
Technical

coefficient
Cosine 0.72 This paper

Ecuador SC CReM
Allocation

coefficient
Cosine 0.76 This paper

ITN CReM Weight 30% Pearson 0.75 Parisi et al. (2020)

e-MID CReM Weight 35-55% Pearson 0.50 Parisi et al. (2020)

Japan’s

bank-firm credit
MaxEnt Weight Cosine 0.68 Ramadiah et al. (2020)

Japan’s

bank-firm credit
BFiCM + IPF Weight Cosine 0.63 Ramadiah et al. (2020)

Table 5: Microscale quantities: comparison of our results with the literature. In column “Data set”, “Ecuador
SC” stands for Ecuador supply chain network, “ITN” for international trade network and e-MID for electronic
market for interbank deposits. In column “Method”, CReM stands for the conditional reconstruction method
that we employ in this paper (Parisi et al., 2020). Besides the MaxEnt method, Ramadiah et al. (2020) use
a two-step procedure. In the first step, the binary topology is reconstructed using a bipartite fitness-induced
configuration model (BFiCM) (Squartini et al., 2017), which extends the fitness-induced configuration model
of Cimini et al. (2015b) to the bipartite case. In the second step, weights are allocated using the iterative
proportional fitting algorithm. For Ramadiah et al. (2020), we show results for the most disaggregated network
and only for the two methods with the highest cosine similarity.

as “pass-through” sectors, accounting only for the trade margin they make and re-distribute the rest
of their output among the other industries.10 The final demand of these other industries thus becomes
(fictitiously) higher. In firm-level data quite the opposite happens, with many firms selling to retail
and wholesale firms that then sell to final demand. We refer to Appendix A.3 and Bacilieri et al.
(2023) for a longer discussion on differences between national accounts and firm-level data.

The data cleaning and data imputation problems just discussed imply that the constraints on
intermediate sales and expenditure of the proxy sector are much bigger than those of other firms.
Therefore, to satisfy the constraints posed in the maximum entropy procedure, the weights allocated
to the proxy node need to be much bigger than those among firms, meaning that firms buy most of
their inputs and sell most of their output to the proxy node. This deteriorates the reconstruction of
the weights, and of the technical and allocation coefficients among firms.

Lastly, the findings for both Ecuador and FactSet suggest that additional mechanisms, not captured
by the constraints we pose, may be at work that are essential to the formation of network weights.
Further unravelling what these mechanisms are could improve the reconstruction.

4.4 Results: higher-order and macroscale properties

First, this section discusses the results for the output multipliers and the influence vector; we start
with Ecuador and then FactSet. Second, we show the results for aggregate volatility. We do not assess
aggregate volatility for FactSet as that would entail estimating TFP using an econometric technique
such as that outlined in Magerman et al. (2016), which is outside of the scope of this paper. We
conclude this section with a discussion.

4.4.1 Multipliers

Ecuador. The reconstruction method performs well at reproducing the empirical output multipliers
but not that well at reconstructing the influence vector. Figure 7a and 7b show the empirical (x -
axis) and the expected (y-axis) output multipliers and influence vector, respectively. For the output
multipliers, points cluster fairly tightly around the identity line (dashed grey line), while for the
influence vector most points are located at the bottom left corner, suggesting that the influence is
consistently overestimated. However, there are a few exceptions, which tend to be firms with higher
influence (Figure C.7). These findings are further confirmed in Figure 7c and 7d, showing the CCDF

10If wholesale is trading service goods, then all of its output is distributed to other products.

17



of the (empirical and reconstructed) output multipliers and influence vector, respectively. It also
highlights that the minimum of the empirical influence vector is around one order of magnitude
smaller than the reconstructed one. The cosine similarity of the output multipliers is higher than that
of the influence vector (0.99 and 0.56, respectively); however, the other error metrics are less clear
cut (Table 7). The reconstruction method can recover the first two moments and the median of the
output multipliers (Table 6). For the influence vector, we can recover only the standard deviation.

In Figure 7a clusters tend to form. Clusters arise because, for the output multipliers, we simulated
firms’ value-added using sector-level data. The interaction of firms’ intermediate expenditures, sectoral
νs’s and the binary topology produces those clusters; see Appendix C.3.3 for more details.

Figure 7: (a), (c) 2D histogram of the empirical (x -axis) and reconstructed (y-axis) output multipliers and
influence vector, respectively, for Ecuador. Perfect prediction is achieved when points lie on the 45-degree line
(dashed grey line). We use 50 log-spaced bins for both axes and count the number of points falling in each square.
(b), (d) CCDF of the output multipliers and influence vector, respectively, for Ecuador. Black dots refer to
the empirical CCDF and red triangles to the CCDF of the expected network. For calculating the empirical
multipliers, we use the full network and consider the multipliers of firms in our test network only.

Output multiplier Influence vector

Empirical Expected Empirical Expected

Mean 1.423 1.553 4×10−5 1×10−4

Median 1.420 1.475 2×10−5 1×10−4

Standard dev. 0.247 0.202 1×10−4 1×10−4

Table 6: Summary statistics of the output multipliers and influence vector for Ecuador. For each multiplier,
the first column reports summary statistics for the multipliers calculated on the empirical network while the
second column on the reconstructed network. We show results for one of the reconstructions; all three quantities
have virtually the same summary statistics across the 50 randomised empirical and reconstructed networks.
We excluded the proxy node from the calculations of the expected multipliers. For calculating the empirical
multipliers, we use the full network and consider the multipliers of firms in our test network only.
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Type RMSE MAE MedAE Cosine similarity

Output multipliers 0.036 0.024 0.015 0.999

(3×10−4) (1×10−4) (2×10−4) (8×10−6)

Influence vector 0.033 0.024 0.022 0.560

(2×10−4) (2×10−5) (1×10−5) (3×10−3)

Table 7: Comparison metrics for Ecuador’s multipliers. As defined in the main text, RMSE denotes the root
mean squared error, MAE the mean absolute error and MedAE the median absolute error. For each multiplier,
we show its mean value across the 50 randomised reconstructions. Below the mean value, the standard deviation
in parenthesis. We excluded the proxy node from the calculations of the expected multipliers. For calculating
the empirical multipliers, we use the full network and consider the multipliers of firms in our test network only.

FactSet. Figure 8a and 8b show the CCDF of, respectively, the expected output multipliers and
the expected influence vector for FactSet. While the CCDF of the influence vector displays heavy
tails, that of the output multipliers does not. As done for the weight distribution, we compare with
empirical findings of other networks where the influence vector is found to have heavy tails and likely
follows a power-law with a divergent second moment (Bacilieri et al., 2023). The estimated power-law
exponent is equal to 1.9, higher than what found for Belgium (1.12, Magerman et al., 2016), Hungary
and Ecuador (around 1.3-1.5 and 1.2-1.4, respectively, Bacilieri et al., 2023). We show the CCDF and
its power-law fit in Appendix C.3.1.11 The output multipliers have a much higher median, first and
second moment in FactSet (Table 8) compared to Ecuador (Table 6), while the influence vector has
lower moments.

Figure 8: CCDF of the expected (a) output multipliers and (b) influence vector for FactSet. The multipliers of
the proxy node are excluded.

Expected

Output multiplier Influence vector

Mean 2.443 8×10−5

Median 2.501 6×10−5

Standard dev. 0.364 8×10−5

Table 8: Summary statistics of the output multipliers and the influence vector for FactSet. The multipliers of
the proxy node are excluded.

4.4.2 Supply-side shocks and aggregate volatility

We measure how firm-level TFP shocks affect macroeconomic output by propagating through the
supply chain network using Equation 12. We simulate TFP shocks as explained in Section 4.2.3. We

11We also fit a power-law distribution to Ecuador’s influence vector and recover an exponent of 2.0. However, the fit
was rather poor. We show results for Ecuador in Appendix C.3.1.
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then use the empirical influence vector to calculate the empirical volatility and the reconstructed
influence vector to calculate the predicted volatility. The volatility predicted by our reconstructed
network is much higher than the empirical one. Using the empirical network, GDP volatility is 6.4%,
while the mean across the 50 reconstructions is 102.3% with a standard deviation of 0.002 (Table 9).

To understand why we predict such a high GDP volatility, we do a variance decomposition analysis
and look at the role of the proxy node in explaining aggregate volatility:

σ2
∆y =

∑
i ̸=κ

Var(∆ϵi)v
2
i + Var(∆ϵκ)v2κ ,

where the first term on the RHS is the contribution to total GDP volatility of the firms in the test
network and the second term is the contribution of the proxy node, indexed by κ. We further look at
shares

ΛS =

∑
i∈S Var(∆ϵi)v

2
i

Var(∆ϵκ)v2κ +
∑

j ̸=κ Var(∆ϵj)v2j
.

where S is the set of observations for which we are computing the share of the variance. We use the
variance to ensure that shares sum up to 1. The proxy node contributes to 99.3% of the variance,
while all the other firms to 0.7%. If we calculate GDP volatility without including the proxy node, the
predicted GDP volatility drops to 8.8%.

Reconstructed Benchmark

Empirical Proxy node No proxy node Proxy node No proxy node

GDP volatility 6.4% 102.3% 8.8% 94% 7.0%

(0.0020) (0.0010) (0.0030) (0.0002)

Table 9: Predicted aggregate GDP volatility using the empirical, the reconstructed and the benchmark influ-
ence vector (Equation 12). For the reconstructed and benchmark, “Proxy node” reports the predicted aggregate
volatility calculated including the proxy node, while “No proxy node” excludes the proxy node from the calcu-
lations. Values for the reconstructed and the benchmark show the average taken over each of the 50 randomised
networks. Below the mean value, we show the standard deviation in parenthesis.

Benchmark. To benchmark our results, we first calculate the influence vector assuming that each
firm buys the same proportion of inputs from its suppliers (i.e., we modify Ω in Equation 11) and then
compute aggregate volatility using Equation 12. Assigning homogeneous input shares for each firm still
satisfies the constraints on the intermediate costs, but the constraints on intermediate sales are not
guaranteed to be satisfied. Our benchmark yields a volatility of 94% when the proxy node is included
and 7.0% when excluded (Table 9). The volatility predicted by the benchmark is 0.6 percentage points
higher than the empirical volatility, while the volatility of the reconstruction is 2.4 percentage points
higher than the empirical volatility.

4.4.3 Discussion

As noticed in Section 4.3.3, we cannot compare with previous results of other studies reconstructing
firm-level production networks. For financial networks and the ITN, different reconstruction methods
perform reasonably well in reconstructing higher-order network properties such as the weighted clus-
tering coefficient (e.g., Mastrandrea et al., 2014; Cimini et al., 2015b,a; Parisi et al., 2020). Table 10
reports some of the findings in the literature. For financial networks, Ramadiah et al. (2020) find
that all the reconstruction methods they employ underestimate the level of systemic risk, except for
a small region of the parameter space. Anand et al. (2015) report similar findings for MaxEnt, but
find that the minimum density method overestimates systemic risk. Di Gangi et al. (2018) find that
the cross-entropy capital asset pricing model can reproduce very well systemic risk while the other
ensemble methods overestimate or underestimate it depending on the shock scenario. Differently, indi-
vidual banks’ systemic risk and indirect vulnerability, which could be seen as akin to the multipliers we
test, are consistently underestimated across all the methods they assess. The degree-corrected gravity
model can reproduce DebtRank (also akin to the multipliers), with a Person correlation equal to 1
(Cimini et al., 2015b).
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Dataset Method Finding Source

Ecuador SC CReM Overestimates influence vector, co-
sine sim. = 0.56

This paper

Ecuador SC CReM Under/Overestimates output mul-
tipliers, cosine sim. = 1.

This paper

e-Mid DcGM DebtRank: correlation = 1 Cimini et al. (2015b)
ITN DcGM DebtRank: corrrelation = 1 Cimini et al. (2015b)
US bank-asset CE CAPM, Max. entropy

CAPM, BWCM, BECM
Underestimate banks’ measures of
systemic risk

Di Gangi et al.
(2018)

Ecuador SC CReM Overestimates aggregate volatility This paper
German banks MaxEnt Underestimates systemic risk Anand et al. (2015)
German banks Minimum density Overestimates systemic risk Anand et al. (2015)
US bank-asset Cross-entropy CAP model Reproduces well aggregate vulner-

ability
Di Gangi et al.
(2018)

US bank-asset Max. entropy CAP model,
BWCM, BECM

Over/underestimate aggregate
vulnerability depending on the
shock scenario

Di Gangi et al.
(2018)

Japan bank-firm
credit

MaxEnt, Min. density, CF +
IPF, BFiCM + IPF

Underestimate the average proba-
bility of default

Ramadiah et al.
(2020)

Table 10: Higher-order and macroscale quantities: comparison of our results with the literature. In column
“Dataset”, “Ecuador SC” stands for Ecuador supply chain network, “ITN” for international trade network and
“e-MID” for electronic market for interbank deposits. In column “Method”, CReM stands for the conditional
reconstruction method that we use in this paper (Parisi et al., 2020). “DcGM” stands for degree-corrected gravity
model (Cimini et al., 2015b), “CE CAPM” for cross-entropy capital asset pricing model (it is a deterministic
method), “Max. entropy CAPM” for maximum entropy capital asset pricing model, “BWCM” for bipartite
weighted configuration model and “BECM” for bipartite enhanced configuration model (all of the last three
methods are ensemble methods). “Min. density” is the minimum density method developed by Anand et al.
(2015). “CF” is the bipartite maximum entropy configuration model and “BFiCM” is the bipartite fitness-
induced configuration model (Squartini et al., 2017); in both cases, weights are allocated in a second step using
the iterative proportional fitting algorithm.
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While the vast majority of the studies find that systemic risk is underestimated, for Ecuador, we
find that the conditional maximum entropy reconstruction method we employ overestimates aggregate
volatility, similar to what Anand et al. (2018) find for the minimum density method. First, while
including the proxy node in the calculations of aggregate volatility is supposed to capture the volatility
of the firms that were excluded from the test network, there is a fundamental difference between the
role the proxy node has in the network and that of the firms that we excluded. The proxy node is
connected to all the other firms in the test network. In contrast, the firms excluded from the test
network are less well connected in the empirical network. Additionally, the proxy node has the biggest
influence, which equals 0.19. Therefore, when the proxy node is shocked, it immediately passes 19%
of the shock to all the other firms in the network. To compare, the firm with the biggest influence in
the empirical network has an influence of 0.005, with the biggest influence among the firms excluded
from the test network being much lower and equal to 0.0002. Noting also that the firms excluded from
the test network contribute to a mere 7% of aggregate volatility while the firms included in the test
network to 93%, it makes sense to exclude the proxy node from the calculation of aggregate volatility
as it is not a good aggregate representation of the rest of the economy, at least in this context. In fact,
while the inclusion of the proxy node degrades the prediction of aggregate volatility, it enhances the
reconstruction of the multipliers; see Appendix C.3.4.

Second, aggregate volatility is still overestimated even when the proxy node is excluded because
the influence vector tends to be overestimated. Notice that the benchmark can predict aggregate
volatility more accurately since it tends to overestimate influences lightly less than the reconstruction
(see Appendix C.3.5). The reconstructed influence vector is overestimated for a combination of two
factors, one of which is related to the binary topology and the other to the weighted topology. We can
see how the binary topology affects the influence vector by looking at the out-degrees, which are highly
affected by the selection of firms and the link deletion. In creating the test network, firms lose more
customers than suppliers (see Appendix C.4.1). Already at the first step (selecting the firms to keep
in our test network), the maximum number of customers (out-degree) decreases almost 7 folds, while
the maximum number of suppliers only 3 folds. Since the influence vector calculates the weighted sum
of the number of walks from firm i to firm j (so following the outgoing edges starting at i) for walks
of various lengths and the out-degrees have been considerably truncated, it cannot capture walks of
longer lengths. Instead, the output multipliers, relying on the incoming edges and thus the in-degrees,
are that not affected. The weighted topology comes into play because the reconstruction method tends
to overestimate weighted quantities for intermediate and small values, which are numerous. Although
higher (and other) weights can be underestimated, these are not abundant enough and the magnitude
of the underestimation is not big enough compared to the quantity and the size of the overestimation
of low and intermediate weights.

For FactSet, a significant result is that the estimated power-law exponent of the distribution of
the influence vector implies a divergent second moment. Acemoglu et al. (2012) show, at a theoretical
level, that the influence vector affects aggregate volatility, so it is important that we can recover an
exponent more or less in line with empirical observations.12

4.5 Results: different numbers of unknown links

We now discuss how the reconstruction method performs when the number of unknown links in the
test network changes; we keep the number of firms constant. We delete 0%, 10%, 20% and so on up
to 90% of the links; we also show results for the reconstruction matching the mean degree of FactSet,
which has 96% of unknown links. For each percentage of unknown links, we simulate 50 randomised
networks and investigate the number of weights that fall into the 50% CI, and the median absolute
error and the cosine similarity for microscale and higher-order quantities. We also assess aggregate
volatility.

12Acemoglu et al.’s (2012) theoretical result is exemplified in Equation 12, which shows that aggregated volatility scales
with the Euclidean norm of the influence vector. Luca’s diversification argument implies that aggregate volatility decays
as N1/2. However, if the CCDF of the influence vector is Pareto distributed with parameter γ ∈ (1, 2), the diversification
argument no longer holds and aggregate volatility decays much more slowly, as N1/(γ−1) (Carvalho and Tahbaz-Salehi,
2019).
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Microscale and higher-order quantities. Figure 9 shows the different metrics used for assessing
the quality of the reconstruction of the weights, and the technical and allocation coefficients, and the
multipliers. For the weights, we show the percentage of weights that fall in the 50% CI (Figure 9a) and
the cosine similarity (Figure 9b). For all the other quantities, we show the median absolute error (left
column) and the cosine similarity (right column). The overall trend is that as the number of unknown
links increases, so do the metrics.

Figure 9: Error metrics and similarity measures as the number of unknown links increases. (a) Percentage
of empirical weights in the 50% confidence interval. (b), (d), (f), (h), (j) cosine similarity for, respectively,
weights, technical and allocation coefficients, output multipliers and influence vector. (c), (e), (g), (i), Mean
absolute error for, respectively, technical and allocation coefficients, output multipliers and influence vector.
Bars show the standard deviation across the 50 randomised networks.
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As the number of unknown links increases, the cosine similarity increases, with the two multipliers
being the only exceptions. Such a counter-intuitive finding arises from the link deletion mechanism.
We are deleting links with a smaller weight with a higher probability, hence as the number of unknown
links increases, the empirical weights associated with the known links are less heterogeneous. Since
maximum entropy methods allocate weights as uniformly as possible given the constraints, the higher
the number of unknowns, the better it can reconstruct the weights associated with the known links.
Consequently, also more weights fall into the 50% confidence interval.

For the allocation coefficients, the cosine similarity is considerably lower than that of all the other
quantities and it jumps from 0.05 to 0.76 when the number of unknown links increases from 90% to
96%. This jump is associated with a considerable decrease in the number of customers firms have
when the number of unknown links increases from 90% to 96% (see Appendix C.4.1). Therefore, the
allocation coefficients, which gauge the percentage of total output firm i sells to firm j, are highly
affected by a drastic decrease in the number of customers (see Appendix C.4.2). However, we would
have expected this to have a negative effect. Instead, it enhances the predictions. On the contrary, the
technical coefficients, which measure the percentage of inputs that j buys from i, do not experience
such a jump because the same drastic change does not happen for the number of suppliers. Moreover,
firms tend to have more customers than suppliers (see Appendix C.4.1 and Bacilieri et al., 2023),
making it easier to guess the weights correctly from the supply side and thus reconstruct the technical
coefficients better than the allocation coefficients throughout.

The output multipliers always have the same cosine similarity. Since the output multipliers are
derived from the technical coefficient matrix and depend on the incoming edges, hence the number of
suppliers firms have, they are not that affected by the number of unknown links. Instead, the influence
vector relies on the number of customers firms have (out-degree), which we saw being more affected
by the deletion of firms and links, so the influence vector has a much lower cosine similarity than the
output multipliers. It is not so clear why the cosine similarity has an inverted U-shaped curve, with
the maximum value of 0.68 reached when 50% of the links are unknown. It is however the case that
the cosine similarity increases from 0.63 when all links are known to 0.68 (50% unknown links) and
then decreases again until it drops to 0.56 when 96% of the links are unknown. It might be that these
are small fluctuations of no particular value and that the reconstruction of the influence vector starts
deteriorating when more than 50% of the links are unknown because the out-degrees start being too
affected by the deletion of the links.

The median absolute error slightly increases for the technical and allocation coefficients because
higher errors (in absolute value) tend to occur for higher weights. The median absolute error is constant
for the multipliers.

Aggregate volatility. Figure 10 shows the predicted aggregated volatility (calculated excluding
the proxy node) as the number of unknown links increases for the reconstruction (red dots), the
benchmark (green squares) and the empirical volatility ( black dashed line). In line with the results
for the case of 96% of unknown links, the reconstruction always predicts a much higher volatility, as
does the benchmark. Although the benchmark’s predictions are closer to the empirical volatility. One
would think that the higher the number of known links, the better we get at predicting aggregate
volatility. However, this is not the case. In fact, the fewer links we know, the better we can predict
GDP volatility. This is because the more links we know, the more we overestimate the influences
(especially bigger influences, see Appendix C.4.2).
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Figure 10: Aggregate volatility as the number of unknown links increases using the reconstructed network (red
dots) and the benchmark (green squares). The black dashed line marks the empirical volatility. Bars show the
standard deviation across the 50 randomised networks. We show the volatility calculated excluding the proxy
node.

5 Conclusions

There is widespread interest in modelling the global economy from the bottom up. There is also
widespread agreement that supplier-customer relations are an essential feature of such modelling
efforts. However, data are scarce, have missing information and are not easily accessible. In this
paper, we have made a couple of first steps in bringing this agenda forward.

First, we provided the first rigorous assessment of a network reconstruction method (Parisi et al.,
2020) on the administrative dataset of Ecuador. We focused on reconstructing the weighted network
given the binary topology when many links and firms are missing. An interesting finding is that
the quality of the reconstruction of different quantities seems to depend on network features that are
particularly sensitive to the sampling strategy of firms and links, something that future research should
explore further. Second, we assessed whether a global dataset of listed firms, where many links and firms
are missing, can be enhanced by merging it with sector-level data. We then used this “augmented”
dataset for inferring the link weights using a conditional maximum entropy method (Parisi et al.,
2020). Our results show that further work needs to be done, especially in reconciling firms’ financial
accounts with national accounts, which is essential for better reconstructing the weighted production
network, in particular when many firms are missing.

In our study, we assumed to know the binary topology (although partially) to cover a use case that
could help reconstruct commercial datasets. A natural next step would be to predict links and then
reconstruct weights, possibly with different degrees of knowledge of the production network. It is of
particular value to understand the performance of reconstruction methods when one does not know
the binary topology, as it could unlock the study of economies for which no such data is available. The
reconstruction method we employed can easily accommodate the prediction of the binary topology,
either partially or in its entirety.

Our assessment of macroscale quantities was rather limited and restricted to a standard general
equilibrium I-O model (Acemoglu et al., 2012). Therefore, there is much research to be done on
different models (and scenarios), especially agent-based models, where we believe that the accuracy
of the reconstruction of microscale quantities matters more for the model’s outcomes than for general
equilibrium models.

While many reconstruction methods are available, the high number of nodes and links in firm-level
networks renders almost all of them infeasible. Future research is thus necessary to develop different
reconstruction methods suited for large-scale firm-level networks. It is also important to conduct
similar analyses on other firm-level datasets for which the ground truth network is available, as ours
was only one of the first initial steps.
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Appendices

A Data

A.1 FactSet: description of the dataset

We use three primary data sources provided by FactSet: Fundamentals, Supply Chain Relationships
and Supply Chain Shipping Transactions. FactSet covers mostly listed firms around the world. We
downloaded the datasets in April 2020. We refer to Bacilieri et al. (2023) for a more detailed description
of the dataset. We remark only that due to the nature of the data collection process, coverage is biased
towards companies listed on US stock exchanges, big firms and big transactions.

The monetary values of customer-supplier transactions are rarely recorded. When recorded, the
money flows are reported as a revenue percentage earned by the seller from a specific customer.
However, it is unknown to what disclosed revenue figure that percentage refers. For example, it could
be the quarterly or the annual income statement, but also some interim revenue disclosure not tied
to any specific financial statement. Similarly, in the shipment dataset, the cumulative value of the
goods shipped, when disclosed, is in most cases above the seller’s revenues and/or the customers’ costs
(for more information on why this is the case, see Bacilieri et al., 2023). Therefore, we dismiss this
information when reconstructing the money flows. There are other, less comprehensive datasets, such
as Compustat, which report the revenue percentage earned by the seller. These could be potentially
merged to enhance the reconstruction. We leave this for future work.

We consider industrial firms only, hence we exclude firms in the financial and insurance sector,
and firms classified as extraterritorial organisations. We aggregate customer-supplier relations within
a year. We use the fiscal year instead of the calendar year to ensure time consistency between the
formation of supplier-customer relations and financial statements. The fiscal year goes from June to
May, meaning that if a company’s fiscal year end-month falls between January and May, the fiscal
year is the current calendar year minus one, otherwise it is the current calendar year.

We further aggregate all three FactSet datasets at the parent company level, meaning that we use
consolidated income statements and attribute subsidiaries’ supplier-customer relations to the parent
company. We delete self-loops (i.e., supply chain relations among the parent and its subsidiaries)
as these stem from intra-group sales that cancel out in consolidated income statements. We rely on
the latest available information on a company’s ownership structure since it is impossible to know
the evolution of companies’ ownership structures (mergers, acquisitions, buy-backs, etc.). For each
company, we also have information on the sector (NACE Rev.2 codes at the 4-digit level) and the
country where the company’s headquarters are located.

A.1.1 Methods for writing the income statement

There are two main methods companies can follow to write their income statements: the function of
expense method or the nature of expense method – some companies adopt a hybrid method. As the
names suggest, the nature of expense method lists expenses based on their nature, while the function
of expense method lists expenses based on their function. Thus, the nature of expense method breaks
down expenses based on the inputs used to perform the business activity, e.g., materials, delivery
charges, changes in inventory, rent, labour expenses and employee benefits. On the other hand, the
function of expense method allocates expenses based on the activity for which the expense arises.
Therefore, “if the expense did not contribute to the creation of the [good] or service that is the
underlying source of sales revenue, they are not part of the cost of goods sold.” (Stolowy and Lebas,
2006, p. 208).

A.1.2 Labour expenses

Depending on the method followed in writing the income statement (explained in Appendix A.1.1),
companies may disclose or not their labour expenses as a separate line item. If a company follows
the nature of expense method, labour costs and the cost of intermediate inputs are broken down into
two separate items on the income statement. However, if a company follows the function of expense
methods, labour and intermediate inputs expenses are lumped together in the cost of goods sold.
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Moreover, even if they follow a function of expenses method, some companies may disclose their
labour costs in a footnote.

FactSet collects the labour expenses disclosed in the footnote but without flagging the method
followed by the company in writing its income statement. Therefore, there is no systematic way to
know whether a company follows the nature of expense or the function of expense method. The only
reasonable assumption is that if labour expenses are not observed in the dataset, it is because the
company followed the nature of expenses method and thus the cost of goods sold correctly represents
intermediate inputs costs. Consequently, it is impossible to extract labour costs from the cost of goods
sold only when necessary.

Estimating missing labour expenses. For constructing the I-O table, we must discern labour
and intermediate inputs expenses as they correspond to different parts of the I-O table. Labour costs
are part of value-added, while intermediate input expenses correspond to in-strengths, i.e., the column
sums of the weighted adjacency matrix (also referred to as inter-industry transaction matrix in sector-
level data). Having an exact quantification of intermediate expenses is necessary to reconstruct the
firm-to-firm money flows (i.e., network weights).

To estimate labour expenses for those firms that do not report them, we use the cost of goods
sold share of labour expenses disclosed by other firms in the same sector. For each sector, we calculate
the sector-level cost of goods sold share of labour expenses using four different estimation strategies,
all of which use a rolling window approach. In this paper, we use the method that minimises the
root mean squared error, the average absolute error and the median absolute error. On the one hand,
method 2a and 3 achieve the minimum RMSE and MAE while method 2b achieves the lowest MedAE
regarding the cost of goods sold share of labour expenses (Table A.2). On the other hand, if we look
at the estimated labour costs and intermediate costs, it is method 2b that has the minimum error
(Table A.3). Therefore, we use method 2b in this paper.

We estimate labour expenses only from 2013 onward and start the rolling window in 2011 because
before 2011 the number of firms in each sector was too low. For firms that disclose their labour
expenses only for a few years, we extrapolate the missing values of the cost of goods sold share of
labour expenses from those that we observe: (1) if we observe labour expenses up to time t and the
missing values are only from t + 1 onward, we use the last value of the cost of goods sold share of
labour expenses and propagate it forward; (2) if we observe labour expenses from t onward but do
not observe labour expenses form 2013 till t, we backpropagate the first available observation; and
(3) if we do not observe labour costs in the middle, meaning that we do observe labour costs from
2013 to t and from t + τ until the end, we estimate the cost of goods sold share of labour expenses
with linear interpolation. Table A.1 reports the percentage of firms that disclose labour costs for each
sector average over time (second column) and its standard deviation (last column), while Figure A.1
shows the density of firms’ cost of goods sold share of labour expenses for each sector (NACE Rev. 2
at the 2-digit level) over time.

NACE division description Av. pct firms Standard dev.

Accommodation 0.618 0.038

Activities of head offices; management consultancy activities 0.528 0.022

Activities of membership organizations 0.750 0.274

Advertising and market research 0.575 0.026

Air transport 0.882 0.042

Architectural and engineering activities; technical testing and analysis 0.732 0.024

Civil engineering 0.663 0.015

Computer programming, consultancy and related activities 0.530 0.022

Construction of buildings 0.608 0.021

Creative, arts and entertainment activities 0.944 0.167

Crop and animal production, hunting and related service activities 0.653 0.052

Education 0.554 0.052

Electricity, gas, steam and air conditioning supply 0.639 0.018

Employment activities 0.541 0.029
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Extraction of crude petroleum and natural gas 0.489 0.040

Fishing and aquaculture 0.707 0.068

Food and beverage service activities 0.430 0.020

Forestry and logging 0.722 0.105

Gambling and betting activities 0.758 0.035

Human health activities 0.692 0.016

Information service activities 0.450 0.028

Land transport and transport via pipelines 0.562 0.060

Legal and accounting activities 0.669 0.093

Libraries, archives, museums and other cultural activities 0.750 0.289

Manufacture of basic metals 0.677 0.023

Manufacture of basic pharmaceutical products and pharmaceutical prepara-
tions

0.610 0.026

Manufacture of beverages 0.685 0.035

Manufacture of chemicals and chemical products 0.603 0.031

Manufacture of coke and refined petroleum products 0.739 0.023

Manufacture of computer, electronic and optical products 0.633 0.027

Manufacture of electrical equipment 0.680 0.050

Manufacture of fabricated metal products, except machinery and equipment 0.634 0.022

Manufacture of food products 0.680 0.014

Manufacture of furniture 0.604 0.028

Manufacture of leather and related products 0.709 0.022

Manufacture of machinery and equipment n.e.c. 0.575 0.047

Manufacture of motor vehicles, trailers and semi-trailers 0.629 0.043

Manufacture of other non-metallic mineral products 0.657 0.021

Manufacture of other transport equipment 0.639 0.036

Manufacture of paper and paper products 0.661 0.015

Manufacture of rubber and plastics products 0.665 0.024

Manufacture of textiles 0.776 0.027

Manufacture of tobacco products 0.698 0.062

Manufacture of wearing apparel 0.643 0.037

Manufacture of wood and of products of wood and cork, except furniture;
manufacture of articles of straw and plaiting materials

0.656 0.047

Mining of coal and lignite 0.649 0.053

Mining of metal ores 0.719 0.037

Mining support service activities 0.594 0.061

Motion picture, video and television programme production, sound recording
and music publishing activities

0.679 0.025

Office administrative, office support and other business support activities 0.647 0.029

Other manufacturing 0.548 0.025

Other mining and quarrying 0.711 0.029

Other personal service activities 0.548 0.048

Other professional, scientific and technical activities 0.612 0.038

Postal and courier activities 0.813 0.089

Printing and reproduction of recorded media 0.720 0.007

Programming and broadcasting activities 0.586 0.047

Public administration and defence; compulsory social security 0.593 0.206

Publishing activities 0.549 0.026

Real estate activities 0.493 0.044

Remediation activities and other waste management services 0.717 0.076

Rental and leasing activities 0.515 0.033

Repair and installation of machinery and equipment 0.681 0.022

Repair of computers and personal and household goods 1 0

Residential care activities 0.588 0.041

Retail trade, except of motor vehicles and motorcycles 0.500 0.021

Scientific research and development 0.569 0.038

Security and investigation activities 0.688 0.033
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Services to buildings and landscape activities 0.508 0.045

Sewerage 0.483 0.059

Social work activities without accommodation 0.680 0.096

Specialized construction activities 0.592 0.037

Sports activities and amusement and recreation activities 0.689 0.044

Telecommunications 0.690 0.019

Travel agency, tour operator, reservation service and related activities 0.621 0.045

Veterinary activities 0.972 0.083

Warehousing and support activities for transportation 0.690 0.031

Waste collection, treatment and disposal activities; materials recovery 0.651 0.034

Water collection, treatment and supply 0.603 0.057

Water transport 0.577 0.030

Wholesale and retail trade and repair of motor vehicles and motorcycles 0.658 0.019

Wholesale trade, except of motor vehicles and motorcycles 0.575 0.013

Table A.1: Time average of the percentage of firms that disclose labour costs per sector.
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Figure A.1: Density of the cost of goods sold share of labour expenses for firms in different sectors and over
time (2011-2019). The titles show the NACE Rev. 2 sectoral classification at the 2-digit level.

34



Let wi,t be labour expenses of firm i at time t and gi,t its cost of goods sold excluding depreciation
and amortisation (for firms employing a by nature method in writing their income statements), then
the cost of goods sold share of labour expenses of firm i at time t is defined as

αi,t =
wi,t

gi,t + wi,t
. (A.1)

For some firms, we observed labour expenses for some years but not for other years. Thus, we assumed
that their αi,t does not change and kept it constant over time.

Estimation method 1. Firstly, we calculate a firm’s average cost of goods sold share of labour
expenses over a three-year period starting from 2013. For example, αi,2013 is computed using a rolling
window going from 2011 to 2013, while for αi,2014 the rolling window goes from 2012 to 2014.13 A
firm’s average cost of goods sold share of labour expenses is given by

ᾱi,t =
1

3

t∑
τ=t−2

αi,τ .

Afterwards, for each year t, we compute sector s’ cost of goods sold share of labour expenses by
averaging over the αi’s of the firms in sector s at time t:

α̃s,t =
1

Ns,t

∑
i∈S

ᾱi,t ,

where Ns,t is the number of firms in sector s at time t and S is the set of firms in sector s.

Estimation method 2. We calculate a sector-level time-varying cost of goods sold share of labour
expenses in the following two ways.

2.a We compute a sector’s cost of good sold share of labour expenses for each time step t by averaging
over the αi’s of firms in sector s:

αa
s,t =

1

Ns,t

∑
i∈S

αi,t .

2.b We calculate a sector’s cost of goods sold share of labour expenses by summing the labour
expenses of firms in sector s at time t and dividing these by the sum of firms’ labour and
intermediate costs:

αb
s,t =

∑
i∈S wi,t∑

i∈S wi,t +
∑

i∈S gi,t
.

After using either of the two methods above (2.a or 2.b), to compute the sector-level cost of goods
sold share of labour expenses at time t, we employ a three-year rolling window to calculate the time
average:

ᾱk
s,t =

1

3

t∑
τ=t−2

αk
s,τ ,

for k = {a, b}, indicating whether we used method 2.a or 2.b in the first step.

Estimation method 3. We start from αa
s,t calculated using method 2.a and then compute a

weighted average using a three-year rolling window:

ᾱ∗
s,t =

t∑
τ=t−2

θs,τα
a
s,τ ,

the θs,t’s are weights that sum up to one. θs,t is the share of sector s at time t in the total expenditure
of the sector on labour and intermediate inputs during the three years. θs,t is defined as:

13For some firms, picked at random, we look at how their α’s change over time; changes are negligible.

35



θs,t =

∑
i∈S gi,τ + wi,τ∑t

τ=t−2

∑
i∈S gi,τ + wi,τ

.

Assessing the methods. Figure A.2 shows the empirical against the predicted cost of goods sold
share of labour expenses for our four estimation methods. They all seem to perform very similarly
except for method 2b, which has the lowest median absolute error but the highest root mean squared
error and median absolute error. Among the others, method 2a and 3 have the same and lowest error
metrics (Table A.2).

Figure A.2: Empirical (x -axis) and predicted (y-axis) cost of goods sold share of labour expenses for our four
estimation methods.

RMSE MAE MedAE

Method 1 0.184 0.138 0.106
Method 2a 0.184 0.137 0.105
Method 2b 0.201 0.144 0.098
Method 3 0.184 0.137 0.105

Table A.2: Error metrics for the cost of goods sold share of labour expenses for the four estimation methods we
devised. RMSE denotes the root mean squared error, MAE the mean absolute error and MedAE the median
absolute error.

Figure A.3 shows the empirical against the predicted labour expenses (top) and intermediate
expenses (bottom) for our four estimation methods. They all seem to perform very similarly. Method
2b has the lowest error metrics (Table A.3). The error metrics are the same for the labour and
intermediate expenses because they mirror each other. Had we not taken the absolute values, for
instance, the error metrics would have opposite sign.
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Figure A.3: Empirical (x -axis) and predicted (y-axis) labour expenses (top) and intermediate expenses (bottom)
for our four estimation methods.

Labour exp. Intermediate exp.

RMSE MAE MedAE RMSE MAE MedAE

Method 1 1,153.6 126.0 8.5 1,153.6 126.0 8.5
Method 2a 1,163.0 126.1 8.5 1,163.0 126.1 8.5
Method 2b 497.0 90.2 8.4 497.0 90.2 8.4
Method 3 1,162.0 126.1 8.5 1,162.0 126.1 8.5

Table A.3: Error metrics for labour and intermediate expenses for the four estimation methods we devised.
RMSE denotes the root mean squared error, MAE the mean absolute error and MedAE the median absolute
error.
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A.1.3 Value-added

Value-added can be calculated using income statements. It is defined in different ways in the literature.
For instance, Yang et al. (2019) calculate it as the sum of deflated wages and deflated earnings before
interest and taxes. Magerman et al. (2016) calculate value-added as the difference between sales and
material costs, which is standard in the production network literature (at the firm level). We adopt a
third strategy based on Miller and Blair’s (2009) book on input-output analysis, which also corresponds
to the definition in the WIOD (which we use to construct the proxy node).

Following Miller and Blair (2009), valued-added is the wage bill (labour costs) plus EBITDA (earn-
ings before interest and taxes). Their definition, which follows national and international accounting
standards, also includes amortisation and depreciation. We do not observe the wage bill for all com-
panies since labour expenses are disclosed depending on the method followed in writing the income
statement. Therefore, for some companies, we estimate labour costs as explained in Section A.1.2.

A.1.4 Cleaning financial statements for the construction of the I-O table

We kept firms with positive sales, intermediate expenses and value-added, and non-negative labour
costs (all firms with zero labour costs have disclosed them), EBITDA and amortisation and deprecia-
tion.

Sanity check. We checked that firms in the dataset respect the accounting identity:

sales = intermediate expenditure + value added + other costs.

Since we did not account for other costs, we expected the residual (other costs) to be non-negative.
However, in 2014, for 30% of the firms, the residual is negative, meaning that sales were smaller than
the sum of the variables on the RHS (excluding other costs).

Most firms with a negative residual disclosed their labour expenses: is it possible that we double-
counted labour expenses? This would mean that a firm adopts a by function method to write the
income statement but reports labour costs in a footnote, which would lead FactSet to record the labour
expenses. If this were the case, labour costs would already be in the cost of goods sold, leading to
counting this expense twice. Thus, we subtract the disclosed labour costs from intermediate expenses
for these firms. Is this reasonable? We checked whether this subtraction caused any firm to have
negative intermediate expenses. It did, but only for 0.5% of the observations for which we did the
procedure.

A positive consequence of the exercise just described is that it allows us to identify firms that likely
adopt a by function method to write the income statement. We propagate this information back in
our estimation of the cost of goods sold share of labour expenses in order to adjust the denominator
in Equation A.1, which for these firms would otherwise be double counting labour costs. After doing
this procedure only 1.2% of the firms in 2014 do not respect the accounting identity. We drop these
firms. The cleaning procedure led to all firms in the sample having a strictly positive value-added.

A.2 FactSet: evaluation of coverage

First, we show what types of firms are in FactSet. Second, we assess the coverage of global economic
activity in FactSet by comparing it to the WIOD. We compare the countries covered and the sectoral
composition in FactSet against that of the WIOD. Subsequently, we quantify the percentage of world
gross output captured by FactSet and then evaluate the growth rates of gross output.

A.2.1 Firm types

Figure A.4 shows the percentage of firms for each firm type as defined by FactSet. We plot data for
the year 2014 (there are 5,442 firms). In the dataset, there are some big private companies, which
also file financial statements, and companies that are extinct by April 2020, when the dataset was
downloaded.
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Figure A.4: Percentage of firms per type in FactSet in 2014. The firm type is defined by FactSet.

A.2.2 Countries covered in WIOD and FactSet

Table A.4 shows the countries that are in the WIOD and the countries where firms in FactSet have
their headquarters for the period 2013–2019. The WIOD has a node named “rest of the world” (RoW),
which captures all the other countries not in the list. The number of overlapping countries is 41. The
Czech Republic and Estonia are covered in the WIOD but not in FactSet.

WIOD (43 countries) FactSet (87 countries)

Australia, Austria, Belgium, Brazil, Bul-
garia, Canada, China, Croatia, Cyprus,
Czechia, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, In-
dia, Indonesia, Ireland, Italy, Japan, Korea
(the Republic of), Latvia, Lithuania, Lux-
embourg, Malta, Mexico, Netherlands
(the), Norway, Poland, Portugal, Romania,
Russian Federation (the), Slovakia, Slove-
nia, Spain, Sweden, Switzerland, Taiwan
(Province of China), Turkey, United King-
dom of Great Britain and Northern Ireland,
United States of America (the).

Argentina, Australia, Austria, Bahamas (the), Bahrain,
Bangladesh, Belgium, Bermuda, Brazil, Bulgaria, Canada, Cay-
man Islands (the), Chile, China, Colombia, Costa Rica, Croatia,
Cyprus, Côte d’Ivoire,, Denmark, Egypt, Faroe Islands (the),
Finland, France, Germany, Greece, Hong Kong, Hungary, Ice-
land, India, Indonesia, Ireland, Israel, Italy, Jamaica, Japan,
Jordan, Kenya, Korea (the Republic of), Kuwait, Latvia, Lithua-
nia, Luxembourg, Macao, Malaysia, Malta, Marshall Islands
(the), Mauritius, Mexico, Monaco, Morocco, Netherlands (the),
New Zealand, Nigeria, Norway, Oman, Pakistan, Panama, Peru,
Philippines (the), Poland, Portugal, Qatar, Republic of North
Macedonia, Romania, Russian Federation (the), Saudi Arabia,
Singapore, Slovakia, Slovenia, South Africa, Spain, Sri Lanka,
Sweden, Switzerland, Taiwan (Province of China), Thailand,
Trinidad and Tobago, Tunisia, Turkey, Ukraine, United Arab
Emirates (the), United Kingdom of Great Britain and Northern
Ireland (the), United States of America (the), Venezuela (Bolivar-
ian Republic of), Vietnam, Zambia

Table A.4: Countries covered by the WIOD and FactSet.

A.2.3 Sectoral composition

Figure A.5 shows the sectoral composition in the WIOD (black bars) and in FactSet aggregated at the
sector level (green bars) using firms’ revenues. We assess the sectoral composition using the sectors’
gross output shares (or revenues for firms). We group ISIC Rev.4 codes at the 1-digit level into eight
higher-level classes shown in Table A.5.
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Figure A.5: Sectoral composition (gross output shares) of the WIOD (black) and FactSet (green) in 2014. For
FactSet, we group firms into sectors and use firms’ revenues. Sectors are defined as in Table A.5, where we
aggregate ISIC Rev. 4 codes at the 1-digit level into macro classes.

40



ISIC Description Macro class

A Agriculture, forestry and fishing Primary
B Mining and quarrying Primary
C Manufacturing Manufacturing
D Electricity, gas, steam and air conditioning supply Utility
E Water supply; sewerage, waste management and remediation

activities
Utility

F Construction Construction
G Wholesale and retail trade; repair of motor vehicles and motor-

cycles
Services

H Transportation and storage Services
I Accommodation and food service activities Services
J Information and communication Services
K Financial and insurance activities Financial and insurance
L Real estate activities Services
M Professional, scientific and technical activities Services
N Administrative and support service activities Services
O Public administration and defence; compulsory social security Public administration and de-

fence
P Education Education
Q Human health and social work activities Human health and social work
R Arts, entertainment and recreation Other services
S Other service activities Other services
T Activities of households as employers; undifferentiated goods-

and services-producing activities of households for own use
Not included

U Activities of extraterritorial organisations and bodies Not included

Table A.5: Description of ISIC Rev. 4 codes at the 1-digit (left column) and our macro-level classes (right
column).

A.2.4 Evaluation of gross output

To understand how well FactSet captures global economic activity, we compare gross output levels
and growth rates in FactSet to national accounting data (WIOD). We show the evaluation from 2013
to 2018, although we only use 2014.

To compare with world economic activity, we use gross output from the WIOD. The last year for
which the WIOD is available is 2014; therefore, we forecast world gross output from 2015 to 2018.14

We assess both the levels and growth rates of gross output.

Levels. A comparison of the time series of aggregate firms’ revenues and world gross output is
shown in Figure A.6a. FactSet captures, on average, 16.4% of world gross output over time. The
yearly percentage of world gross output captured by FactSet is given by

ϕt =

∑
i qi,t
qt

, (A.2)

where qt is world gross output at time t and qi,t is firm i’s sales at time t. When forecasting world
gross output, besides our central estimate, we also calculate a best and worst case; these yield a lower
bound of 15.1% and an upper bound of 18.3% on the central estimate.

14 The WIOD is available from 2003 to 2014 but our firm-level dataset is available from 2014 to 2020. We forecast
world gross output from 2015 until 2018 using GDP from the World Bank as follows. We take the ratio of gross output
to GDP, which is known to be fairly stable over time, and assume that after 2014 this ratio stays constant. This gives us
gross output qt as a function of GDP yt and the gross output/GDP ratio ζt, thus qt = ζ2014 ·yt for all t = 2015, . . . , 2020.
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Figure A.6: (a) World gross output in the WIOD (black dotted line) and cumulative revenues of firms in
FactSet (green line with triangles). Values in millions of US dollars. We show error bars for the years for which
we forecast gross output (2015–2018); see Footnote 14 for a description of the forecasting methodology. (b)
Percentage captured by FactSet of world gross output (WIOD, Equation A.2). The shaded blue area shows
error bounds related to the gross output forecasts. The dashed black line marks the time average.

Growth rates. For the growth rate of gross output, we carry out the same assessment described
above for the levels of gross output. Figure A.7a shows the growth rate of gross output in our aggregated
FactSet dataset (green line with triangles) and in the WIOD (black line with circles). Over time,
FactSet’s growth rates differ from world growth rates by 2.3 percentage points on average. To assess
how much the growth rates differ, we used the following metric

ϕt = |g(q̃t) − g(qt)|, (A.3)

where g(qt) denotes the growth rate of world gross output at time t and the tilde indicates our aggregate
variable constructed from firms’ revenues.

Figure A.7: (a) Growth rate of world gross output (WIOD, black line with circles) and the growth rates of firms’
revenues in FactSet (green line with triangles). As in Figure A.6, we forecast world gross output from 2015 to
2018. (b) Absolute error between the growth rate of world gross output (WIOD) and the growth rate of firms’
revenues (FactSet). The y-axis shows percentage points and the dotted black line shows the time average.

A.3 Merging FactSet with sector-level I-O tables (the WIOD)

Table A.6 describes the variables and associated notation used.
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Notation Description

qi firm i’s total sales
qs sector s’ gross output
di firm i’s intermediate sales
ds sector s’ intermediate sales
xi firm i’s intermediate expenditure
xs sector s’ intermediate expenditure
fi firm i’s final demand
fs sector s’ final demand
ks sector s’ gross fixed capital formation
∆ns changes in inventories and valuables of sector s
wi firm i’s labour costs
yi firm i’s value-added
ys sector s’ value-added
τ taxes minus subsidies on products of sector s
es CIF and FOB adjustments on exports of sector s
ps direct purchases abroad by residents and purchases on the domestic territory by

non-residents for sector s
us international transport margins of sector s
Zr,s the amount of intermediate inputs sector s buys from sector r

Table A.6: Notation and terminology.

Since FactSet does not cover the entire economy, we supplement it with one proxy node constructed
from input-output data at the sector level (we use the WIOD). I-O tables at the sector level capture
economic linkages between industries in a country and sometimes also across countries – clearly, these
data are at a more aggregated level than supply chain networks at the firm level. I-O tables at the
sector level provide information on the monetary flows related to inputs or consumption expenditure
from each industry to each of the other industries, itself and other agents in the economic system such
as households and the government sector.

Figure A.8 shows the structure of the WIOD (the dataset we used), which is standard in aggregate
I-O datasets based mostly on national accounts. On the rows, there are the supplying industries
grouped by country and on the columns are the customers. Thus, each column portrays an industry
production “recipe” and the row its customer base. The central block, which involves only trades
among industries, is called the inter-industry transaction matrix or intermediate consumption. On
its right, there are final uses or final demand, which in the WIOD comprises both consumption and
investment demand. At the bottom, there is value-added. The 2016 version of the WIOD covers 43
countries and 56 sectors from 2000 to 2014.

Figure A.8: Example of a multi-country I-O table; here we show the World Input-Output Database. Source:
Timmer et al. (2015, p.577).
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We construct the I-O table using FactSet and supplement it with a synthetic node constructed
using the WIOD. The synthetic, or proxy, node is connected to all the firms (both incoming and
outgoing links). The synthetic node accounts for the production, sales and value-added of firms that
are not in our network (i.e., the rest of the global economy). While the WIOD is at the country-sector
level, we aggregate it into only one node for two reasons. Firstly, the firms in our supply chain data are
multinational companies aggregated at the group level, as such their production is scattered around
the world, making it difficult to attribute their sales, expenditure and value-added to a specific country.
Secondly, while we tried to keep the sector dimension – which would have allowed us to have one proxy
node per sector – differences between national accounting standards (WIOD) and financial accounting
standards (FactSet) prevented us from accurately constructing an I-O table at the firm-sector level.
We briefly outline the differences between national accounts and firms’ financial accounts in what
follows; for a more in-depth discussion, we refer to Bacilieri et al. (2023).

As shown in Figure A.8, an I-O table is composed of three main parts: the central block (inter-firm
or inter-industry transaction matrix), final uses (or final demand) and value-added. The structure of
the I-O table implies that there are four main variables to construct and harmonise with our firm-
level data when introducing the proxy sector (we discuss this in more detail in the following section,
Appendix A.3.1). These four variables are total and intermediate sales and costs, value-added and
final demand. We build these variables for the proxy sector by subtracting from the WIOD totals
the observed firms’ cumulative values (for the firms in the cleaned FactSet dataset). While these four
variables are relatively easy to identify in sector-level I-O tables, labour expenses and final demand
pose challenges in their exact quantification at the firm level.

A.3.1 Accounting identities in the WIOD

Within a year, the WIOD table is at the country-sector level. Even though we aggregate over countries
and sectors, it is helpful to understand the accounting identities underlying it. We show accounting
identities by omitting the country and time index, but identities hold for country-sector tables and for
one aggregated sector in the same way. Although for one sector, the inter-industry matrix becomes
somewhat meaningless.

From the use side, the accounting identity used in the WIOD is

qs =
∑
r

Zsr + fs + ks + ∆ns , (A.4)

which states that gross output of sector s is the sum of intermediate sales of sector s, its final demand
fs, gross fixed capital formation ks (investment) and changes in inventories ∆ns.

From the expenditure side, the accounting identity is

qs =
∑
r

Zrs + τs + es + ps + ys + us , (A.5)

which states that gross output of sector s (from the expenditure side) equals total expenditure on
intermediate inputs, plus taxes minus subsidies τs, plus cost, insurance and freight (CIF) and free on
board (FOB) adjustments on exports es, value-added ys and international transport margins us.

To construct the proxy sector, the variable definitions in the sector-level I-O table need to match
the definition of the variables at the firm level taken from firms’ financial statements. We discuss how
we harmonise the two datasets in the following two sections.

A.3.2 Expenditure-side harmonisation

In this section, we define and describe how we harmonised two main variables that make up the I-O
table from the expenditure side: intermediate expenditure and value-added. We do not account for
direct purchases abroad by residents and purchases on the domestic territory by non-residents since
these are zero for industries.

Expenditure on intermediate inputs. From the expenditure side, we define sectoral intermediate
expenditure to include also CIF and FOB costs, and international transport margins since these are
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costs that if firms incur into are in the cost of goods sold:

xs =
∑
r

Zrs + es + us . (A.6)

Firms’ intermediate consumption is defined as expenditure on intermediate inputs and services as
stated in their invoices and reported as a cumulative figure in their income statements in the cost of
goods sold. The cost of goods sold may include labour costs and thus needs to be cleaned for some firms
depending on the method they use to write their income statement (see Appendix A.1.1 and A.1.2).

Value-added. Sectoral gross value-added is defined by the System of National Accounts (SNA) as
labour and capital compensation, consumption of fixed capital and taxes net of subsidies (United
Nations, 2010). The WIOD provides taxes net of subsidies as a separate variable, which thus needs to
be added to the definition of value-added.15 Sectoral gross value-added is given by

ygrosss = τs + ys . (A.7)

Firms do not disclose the subsidies they received as a separate line item; therefore, we did not
include subsidies and simply added taxes (a definition of firms’ value-added is provided in Ap-
pendix A.1.3).

A.3.3 Use-side harmonisation

In this section, we define and describe how we harmonise the four variables that make up the I-O table
from the use side, namely final demand, intermediate sales, gross fixed capital formation and changes
in inventories.

While it is more straightforward to reconcile prices on the expenditure side, it is less so on the use
side. On the use side, prices are at the purchaser’s price; that is, the amount paid by the purchaser
plus trade margins (wholesale and retail), transport margins (if invoiced by the producer) and non-
deductible VAT minus deductible VAT. However, at the firm level output (i.e., revenues) is the amount
received by the producer for the good or service sold minus VAT (deductible and non) and subsidies.
While transport and trade margins may be in the firm’s revenues, VAT and subsidies are not. We
cannot take care of these mismatches because we lack the data to do so.

Final demand. Sectoral final demand is defined as in the WIOD and it comprises the consumption
of households, the government and non-profit organisations.

Firms do not disclose sales to final demand nor sales to other firms; hence revenues include sales to
other firms in the network and sales to final demand. To infer how much a firm sells to final demand,
we use the share of final demand satisfied by the sector the firm is in. More formally, let qs be gross
output of sector s, fs be final demand of sector s and qi be firm i’s revenues (or total sales), then final
demand of firm i is given by

fi = qi
fs
qs

. (A.8)

Gross fixed capital formation. Gross fixed capital formation (GFCF) is defined in the SNA as
“the value of [...] acquisitions less disposals of fixed assets” (United Nations, 2010); it is a measure
of investment. In the WIOD, GFCF corresponds to the part of a sector’s output that ends up as
an investment. It also includes some intangible assets when they are part of the SNA, but not all
intangibles are covered.

In firm-level data, firms making capital goods disclose their customers and sales of capital goods
are accounted for in the disclosed revenues. However, we cannot distinguish these types of transactions.

15The variable capital compensation that makes up value-added in the WIOD comprises both profit and consumption
of fixed capital. It is a residual variable after subtracting labour compensation from value-added. Moreover “it is the
gross compensation for capital, including profits and depreciation allowances. Because of its derivation as a residual, it
reflects the remuneration for capital in the broadest sense. This does not include only traditional reproducible assets
such as machinery and buildings but also includes non-reproducible assets. Examples are mineral resources and land,
intangible assets (such as R&D knowledge stocks, software, databases, brand names and organisational capital) and
financial capital” (Timmer et al., 2015, p. 601).
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Therefore, we apply a correction factor to a firm’s revenues similar to Magerman et al. (2016). As for
final demand, we estimated a firm’s GFCG as follows

ki = qi
ks
qs

, (A.9)

where k is gross fixed capital formation either of firm i or sector s. A firm’s expenditure on capital
goods is not included in the cost of goods sold, thus no adjustment is needed on the expenditure side.

In the WIOD, the ratio ks/qs is negative for ISIC code E37-E39 “ sewerage; waste collection, treat-
ment and disposal activities; materials recovery; remediation activities and other waste management
services”. We assume that firms in this sector do not provide investment goods and hence have zero
GFCF.

Intermediate sales. Sectoral intermediate sales are sales of intermediate inputs and services to
other sectors in the economy. We use the same definition for firms, with the caveat that to get
intermediate sales, we have to subtract from revenues the sales to final demand and GFCF.

Changes in inventories. We exclude changes in inventory since, in the WIOD, it is a column
used for adjustments. Suppose we were to include changes in inventories. In that case, it should go
with intermediate expenditure since the variable to which inventory changes correspond to at the firm
level is the cost of goods sold, which is defined as beginning inventory minus ending inventory plus
purchases during the period.

A.4 Sectoral codes

Table A.7 and A.8 describe, respectively, NACE Rev.2 codes at the section level (1-digit) and ISIC
Rev. 4 codes at the 2-digit level.

Section
(1-digit)

Description Divisions
(2-digit)

A Agriculture, forestry and fishing 01 – 03
B Mining and quarrying 05 – 09
C Manufacturing 10 – 33
D Electricity, gas, steam and air conditioning supply 35
E Water supply; sewerage, waste management and remediation activities 36 – 39
F Construction 41 – 43
G Wholesale and retail trade; repair of motor vehicles and motorcycles 45 – 47
H Transportation and storage 49 – 53
I Accommodation and food service activities 55 – 56
J Information and communication 58 – 63
K Financial and insurance activities 64 – 66
L Real estate activities 68
M Professional, scientific and technical activities 69 – 75
N Administrative and support service activities 77 – 82
O Public administration and defence; compulsory social security 84
P Education 85
Q Human health and social work activities 86 – 88
R Arts, entertainment and recreation 90 – 93
S Other service activities 94 – 96
T Activities of households as employers; undifferentiated goods- and

services-producing activities of households for own use
97 – 98

U Activities of extraterritorial organisations and bodies 99

Table A.7: Description of NACE Rev.2 at the 1-digit (first column) and 2-digit level (last column).
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ISIC code Description

A01 Crop and animal production, hunting and related service activities
A02 Forestry and logging
A03 Fishing and aquaculture
B Mining and quarrying
C10-C12 Manufacture of food products, beverages and tobacco products
C13-C15 Manufacture of textiles, wearing apparel and leather products
C16 Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw

and plaiting materials
C17 Manufacture of paper and paper products
C18 Printing and reproduction of recorded media
C19 Manufacture of coke and refined petroleum products
C20 Manufacture of chemicals and chemical products
C21 Manufacture of basic pharmaceutical products and pharmaceutical preparations
C22 Manufacture of rubber and plastic products
C23 Manufacture of other non-metallic mineral products
C24 Manufacture of basic metals
C25 Manufacture of fabricated metal products, except machinery and equipment
C26 Manufacture of computer, electronic and optical products
C27 Manufacture of electrical equipment
C28 Manufacture of machinery and equipment n.e.c.
C29 Manufacture of motor vehicles, trailers and semi-trailers
C30 Manufacture of other transport equipment
C31-C32 Manufacture of furniture; other manufacturing
C33 Repair and installation of machinery and equipment
D35 Electricity, gas, steam and air conditioning supply
E36 Water collection, treatment and supply
E37-E39 Sewerage; waste collection, treatment and disposal activities; materials recovery; remediation activities

and other waste management services
F Construction
G45 Wholesale and retail trade and repair of motor vehicles and motorcycles
G46 Wholesale trade, except of motor vehicles and motorcycles
G47 Retail trade, except of motor vehicles and motorcycles
H49 Land transport and transport via pipelines
H50 Water transport
H51 Air transport
H52 Warehousing and support activities for transportation
H53 Postal and courier activities
I Accommodation and food service activities
J58 Publishing activities
J59-J60 Motion picture, video and television programme production, sound recording and music publishing activ-

ities; programming and broadcasting activities
J61 Telecommunications
J62-J63 Computer programming, consultancy and related activities; information service activities
K64 Financial service activities, except insurance and pension funding
K65 Insurance, reinsurance and pension funding, except compulsory social security
K66 Activities auxiliary to financial services and insurance activities
L68 Real estate activities
M69-M70 Legal and accounting activities; activities of head offices; management consultancy activities
M71 Architectural and engineering activities; technical testing and analysis
M72 Scientific research and development
M73 Advertising and market research
M74-M75 Other professional, scientific and technical activities; veterinary activities
N Administrative and support service activities
O84 Public administration and defence; compulsory social security
P85 Education
Q Human health and social work activities
R-S Other service activities
T Activities of households as employers; undifferentiated goods- and services-producing activities of house-

holds for own use
U Activities of extraterritorial organizations and bodies

Table A.8: Description of ISIC Rev. 4 at the 2-digit level.
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B Derivations

B.1 The conditional maximum entropy reconstruction method of Parisi et al.
(2020)

The maximum entropy method developed by Parisi et al. (2020) aims to reconstruct an ensemble of
likely weighted networks that are consistent with prior information about the binary topology and that
satisfy (in expectation) a set of constraints on observed network quantities – in our case, the in- and
out-strengths. To reconstruct the ensemble of weighted networks, the method infers the probability
distribution over the likely weighted network configurations by maximising the conditional (on the
binary topology) Shannon entropy subject to imposed constraints.

The reconstruction procedure consists of two steps. The first step involves a deterministic maximum
entropy procedure, known as MaxEnt in the literature, from which we derived a value for each link
weight. Since MaxEnt has been found to be the best performing in reconstructing weights (Anand
et al., 2015; Lebacher et al., 2021), the weights found in the first step are then used in the second step
to constraint the expected value of each link weight.16 This procedure yields a computational benefit
because, as we will see below, we have to solve m (the number of links) decoupled equations. Instead,
had we imposed constraints on the in- and out-strengths, we would have had to solve 2N coupled
equations, where N is the number of nodes (see Parisi et al. (2020) for the derivation).

First step. We derive a value for the expected weights using the MaxEnt method. MaxEnt is derived
by solving a deterministic maximum entropy problem, which maximises an entropy-like functional
subject to constraints on intermediate sales and costs of each firm:

maximise
{Wij}

S(W ) = −
∑
ij

Wij logWij

subject to
∑
j

Wij = sout
∗

i i = 1, . . . , N

∑
j

Wji = sin
∗

i i = 1, . . . , N ,

(B.1)

which yields

WME
ij =

sout
∗

i sin
∗

j

W tot∗
, (B.2)

where Wij is the money flow from firm j to firm i, sout
∗

i are the observed total intermediate sales
(out-strength) of firm i, sin

∗
i are the observed total intermediate costs (in-strength) of firm i and

W tot∗ =
∑

i s
out∗
i =

∑
i s

in∗
i is the total weight of the empirical network. Note that MaxEnt generates

a fully connected network.

Second step. We solve the conditional maximum entropy problem to derive a value for the expected
weights given that there is a link between i and j. Let W ∈ W be a weighted adjacency matrix, which
is a realisation of the random variable W. Similarly, let A ∈ A be a binary adjacency matrix, which
is a realisation of the random variable A. The method maximises the conditional entropy S(W | A)
defined over the probability density function of the weighted network configurations compatible with
the binary topology and satisfying the constraints on the expected weights given by the MaxEnt
prescription (Equation B.2):

maximise
{Q(W |A)}

S(W | A) = −
∑
A∈A

P (A)

∫
WA

Q(W | A) logQ(W | A)dW

subject to ⟨Wij⟩ =
∑
A∈A

P (A)

∫
WA

Wij(W )Q(W | A)dW = WME
ij ∀(i, j) ∈ E∫

WA

Q(W | A)dW = 1, ∀A ∈ A ,

(B.3)

16While we use the MaxEnt prescription, one could choose any value, including an observed value, when available.
This value then needs to be subtracted from the in- and out-strengths.
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where WA is the set of weighted configurations compatible with the binary topology, Q(W | A) is the
conditional probability of generating a weighted network W consistent with adjacency matrix A and
E is the edge set. The information on the binary network enters in probabilistic terms through P (A),
the probability of observing the binary topology A. P (A) could be estimated, in a prior step using
any suitable method. However, we supply the observed topological structure A = A∗, thus P (A∗) = 1
and P (A) = 0 ,∀A ∈ A,A ̸= A∗.

Solving the above maximisation problem yields the Hamiltonian H(W ) =
∑

i ̸=j λijWij and the
graph probability Q(W |A) =

∏
i ̸=j Qij(Wij | Aij) with

Qij(Wij | Aij) =

{
λije

−λijWij Wij > 0 , if Aij = 1 ,

0 otherwise.
(B.4)

Therefore, Qij(Wij |Aij = 1) is of exponential form with parameter λij , the Lagrange multiplier associ-
ated to the constraint on ⟨Wij⟩. It follows that the generalised likelihood for the given set of constraints
is

g(λ) = −
∑
i ̸=j

λijW
ME
ij +

∑
i ̸=j

∑
A∈A

P (A)Aij log λij , (B.5)

with first order conditions given by

⟨Wij⟩ =
pij
λij

= WME
ij , ∀i ̸= j, (B.6)

where pij =
∑

A∈A P (A)Aij is the probability that a link going from i to j exists. Substituting the
MaxEnt prescription (Equation B.2), the Lagrange multipliers are given by

λ∗
ij = pij

W tot∗

sout
∗

i sin
∗

j

. (B.7)

Since we consider a deterministic binary topology, the Lagrange multipliers simplify to

λ∗
ij =

W tot∗

sout
∗

i sin
∗

j

for (i, j) ∈ E . (B.8)

The MexEnt procedure assumes that the network is fully connected; however, the generalised
maximum entropy method we employ assumes no self-loops. Additionally, we know where the links
are. Therefore, we need to redistribute all the weights corresponding to Aij = 0,∀(i, j) /∈ E . To do so,
we employ the IPF algorithm that redistributes the weights in an iterative procedure such that at the
n-th iteration the weight is given by

Wn
ij = sout

∗
i

W
(n−1)
ij∑

k ̸=iW
(n−1)
ki

and W
(n+1)
ij = sin

∗
j

Wn
ij∑

k ̸=j W
n
kj

. (B.9)

Confidence interval on the expected link weight. One of the benefits of Parisi et al.’s method
is that one can calculate a confidence interval [w−, w+] for each of the expected weights. The lower
bound is given by

w− = − ln[e−1 + q−]

λ∗
ij

, (B.10)

where q− is a desired confidence level. The upper bound is given by

w+ = − ln[e−1 − q+]

λ∗
ij

. (B.11)

We refer to Appendix E in Parisi et al. (2020) for the whole derivation.

49



C Additional results

C.1 Weights

Ecuador. Figure C.1a shows the CCDF of the empirical weights of the full network (blue squares),
the test network (green diamonds), the trimmed test networks (black dots) and that of the recon-
structed networks (red triangles). All three weight distributions display heavy tails. Figure C.1b shows
the power-law fit for one of the randomised networks. The distribution of the empirical weights has
a power-law exponent of 1.1, while that of the reconstruction is higher and equal to 1.3. The cut-off
point is also higher for the reconstructed weight distribution.

Figure C.1: (a) CCDF of the weights of the empirical full network (all firms in the Ecuadorian economy; blue
squares), the empirical test network (green diamonds), the empirical trimmed test networks (black dots) and
the reconstructed networks (red triangles); the shaded area indicates the 50% confidence interval. We show all
50 randomised test networks. (b) Power-law fit to the empirical (black dots) and expected (red triangles) weight
distribution. The black dashed line shows the power-law fit to the empirical distribution, while the red solid
line the power-law fit of the reconstructed distribution; we show results for one of the reconstructions.

The panels in the top row of Figure C.2 show the histograms of the relative prediction errors of
Ecuador’s weights for one of the randomised reconstructions. The top left panel shows the histogram
of the non-positive error terms and the panel on the right the positive errors. The relative prediction
error is defined as ϵi = (Wij−W ∗

ij)/W
∗
ij , where W ∗

ij is the empirical value and Wij is the reconstructed
weight. The mean relative prediction error is 285.7%. Such a high mean is driven by a big outlier,
which is 674,065%; the median is 40%.

The panels in the bottom row of Figure C.2 show the empirical weights on the x -axis and the
relative prediction errors on the y-axis; we plot non-positive errors on the left and positive errors on
the right. The reconstruction method consistently under-predicts weights with values above ∼ 108.
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Figure C.2: Top: Histogram of the relative prediction errors of the weights for Ecuador. We plot separately the
errors that are non-posite (left) and the errors that are positive (right). Bottom: Empirical weights (x -axis)
against the relative prediction error (y-axis) for Ecuador. We plot the error terms that are non-positive on the
left and those that are positive on the right. We divide both axes into 50 log-spaced bins and then count the
number of data points falling in each square.

FactSet. Figure C.3 shows the CCDf of the expected weight distribution (blue squares) and its
power-law fit (solid blue line) for FactSet. The estimated exponent equals 1.

Figure C.3: CCDF of the expected weights (blue squares) and its power-law fit (solid blue line) for FactSet.

C.2 Technical and allocation coefficients

Ecuador. Figure C.4 shows the distribution of the empirical technical (left) and allocation coef-
ficients (right) of the full network (blue squares), the test network (green diamonds), the trimmed
test networks (black dots) and reconstructed networks (red triangles). The three distributions are
right-skewed but do not display heavy tails.
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Figure C.4: CCDF of the technical (left) and allocation coefficients (right) of the empirical full network (blue
squares), the empirical test network (green diamonds), the empirical trimmed test networks (black dots) and of
the reconstructed networks (red triangles). We show all 50 randomised networks.

C.3 Multipliers

C.3.1 Influence vector

Ecuador. Figure C.5a shows the distribution of the empirical influence vector of the full network
(blue squares), our test networks comprising 5,440 firms (black dots) and the reconstructed networks
(red triangles). We compute the empirical influence vector for the firms in the (trimmed) test network
using the network comprising all firms and then plot the distribution of only the 5,440 firms included in
the (trimmed) test network. Therefore, the firms in the trimmed test network and the test network have
the same influence. Figure C.5b shows the power-law fit for one of the reconstructions. The empirical
distribution has a power-law exponent equal to 1.3, while the expected has a higher exponent, equal
to 2. The CCDF of the expected influence vector also has a higher cut-off.

Figure C.5: (a) CCDF of the influence vector of the empirical full network (all firms in the Ecuadorian economy;
blue squares), the empirical (trimmed) test network (black dots) and the reconstructed networks (red triangles).
We show all 50 randomised test networks. (b) Power-law fit to the empirical (black dots) and expected (red
triangles) influence vector distribution. The black dashed line shows the power-law fit to the empirical distribu-
tion, while the red solid line the power-law fit of the reconstructed distribution; we show results for one of the
reconstructions.

FactSet. Figure C.6 shows the distribution of the expected influence vector (blue squares) and its
power-law fit (solid blue line) for FactSet. The power-law exponent equals 1.9.
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Figure C.6: CCDF of the expected influence vector (blue squares) and its power-law fit (solid blue line) for
FactSet.

C.3.2 Prediction errors

Figure C.7a shows the histogram of the relative prediction errors for the output multipliers, while
Figure C.8a for the influence vector, both are for Ecuador and for one of the 50 randomised networks.
For the output multipliers, the mean relative prediction error is -0.7% and the median is -0.4%. For
the influence vector, the mean relative prediction error is 735.1% and the median is 679.4%.

Figure C.7b shows the empirical output multipliers against the relative prediction errors for
Ecuador, while Figure C.8b and C.8c for the influence vector. Figure C.8b shows observations for
which the error term is non-positive, while Figure C.8c for observations for which the error term is
positive.

Figure C.7: (a) Histogram of the relative prediction errors of the output multipliers for Ecuador. (b) 2D
histogram of the empirical output multipliers (x -axis) and the prediction errors (y-axis). We use 50 log-spaced
bins for both axes and count the member of points falling into each square.
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Figure C.8: (a) Histogram of the relative prediction errors of the influence vector for Ecuador. (b), (c) 2D
histogram of the empirical influence vector (x -axis) and the relative prediction errors (y-axis) for errors that
are non-positive and positive, respectively. We use 50 log-spaced bins for both axes and count the number of
points falling into each square.

C.3.3 Empirical and expected multipliers by sector

Output multipliers. Figure C.9 shows the empirical output multipliers on the x -axis against the
expected output multipliers on the y-axis for Ecuador. Points are coloured based on the sector firms
are in. Data points tend to organise in clusters, which form because the calculation of the technical
coefficients requires knowing the value-added of each firm. Since we did not have access to firms’
value-added, we used sector-level I-O tables to infer firms’ value-added. The value-added of firm i is
yi = νs · sini , where νs = ys/s

in
s is the ratio of value-added and total intermediate expenses of sector s.

We show νs in Figure C.9b, also colour-coded by sector.

Figure C.9: (a) Empirical (x -axis) and expected (y-axis) output multipliers for Ecuador. Perfect prediction is
achieved when all points lie on the 45-degree line (solid grey line). (b) νs = ys/s

in
s , i.e., the ratio of value-added

and total intermediate expenses by sector in Ecuador’s I-O table. Different colours and shapes correspond to
the sectors in the I-O table in which firms are.
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Influence vector. Figure C.10 shows the empirical influence vector on the x -axis against the ex-
pected influence vector on the y-axis for Ecuador. Points are coloured based on the sectors in the I-O
table in which firms are.

Figure C.10: Empirical (x -axis) and expected (y-axis) influence vector for Ecuador. Perfect prediction is achieved
when all points lie on the 45-degree line (dashed grey line). The colours and shapes correspond to different
sectors.

C.3.4 The effect of the proxy node on the centrality measures

Figure C.11a and Figure C.11d show the empirical multipliers against the reconstructed multipliers
including the proxy node, while Figure C.11b and Figure C.11e excluding the proxy node from the
calculations. Figure C.11c and Figure C.11f compare the expected multipliers that include to proxy
node to those that exclude the proxy node from the calculations.

The influence vector is not that much affected by the inclusion, or not, of the proxy node (Fig-
ure C.11d and Figure C.11e). The inclusion of the proxy node increases the influence of all the nodes
compared to when it is not included (Figure C.11f). While the error metrics are only slightly lower
when the proxy node is excluded, the cosine similarity is slightly higher (0.56 vs 0.55) and the power-
law exponent slightly smaller (2.0 vs 2.1). The mean and median are off for both and we can only
recover the variance if we include the proxy node, otherwise it is smaller. The proxy node is always
the one with the higher influence.

On the contrary, the output multipliers are highly affected by the inclusion, or not, of the proxy
node (Figure C.11a and Figure C.11b). When the proxy node is not included the output multipliers
are underestimated (Figure C.11b). The proxy node is never the one with the highest centrality. When
the proxy node is included, we can recover the mean, median and standard deviation, while when it
is excluded, these are all underestimated (especially the mean and median).
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Figure C.11: (a), (d) Empirical centrality measure (x -axis) and the expected calculated including the proxy node
(y-axis) for the output multipliers (Oi) and the influence vector (vi), respectively. (b), (e) Empirical centrality
measure (x -axis) and the expected calculated excluding the proxy node (y-axis) for the output multipliers (Oi)
and the influence vector (vi), respectively. (c), (f) Expected centrality measure calculated excluding the proxy
node (x -axis) and the expected centrality measure calculated including the proxy node (y-axis) for the output
multipliers (Oi) and the influence vector (vi), respectively. The dashed grey line marks the identity line.
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Before delving into the details of why this is happening, it is useful to define again these two
centrality measures.The output multiplier is defined as

O ≡ (I − T⊤)−11 ,

or in scalar form

Oj =
∑
i

Wij

qj
Oi + 1 .

The output multipliers measure the centrality of a node by assigning a centrality score for each
incoming edge – of course, these edges are weighted and normalised by the total cost of the node for
which we are measuring the multiplier. The influence vector is defined as

v ≡ α

N
[I − (1 − α)Ω]−11 ,

or in scalar form

vi =
∑
j

(1 − α)
Wij

sinj
vj +

α

N
.

The influence vector, instead, assigns a centrality score for each node the focal node points to. So
nodes that point to more nodes are more central – again, edges are weighted and normalised by the
in-strength of the nodes to which the focal node points to. In both centrality measures, a node can
be very influential because it has many incoming or outgoing links with nodes of mild influence, for
the output multiplier and the influence vector, respectively, or because the node has few incoming or
outgoing links with highly influential nodes, for the output multiplier and the influence vector.

Since the only thing that changes in the calculated multipliers is the inclusion or not of the proxy
node, let us focus on the proxy node’s role in the multipliers:

Oj ∼ 1 +
Wpj

qj
Op + . . . , and

vi ∼
α

N
+ (1 − α)

Wip

sinp
vp + . . . ,

where p indexes the proxy node. Each link of the proxy node matters more in the output multipliers
since, empirically, Wpj/qj > (1 − α)Wip/s

in
p , for all but the link the proxy node has with itself and

with one another node.

C.3.5 Reconstructed and benchmark influence vector

Figure C.12 shows the “uniform” influence, which we use to benchmark aggregate volatility, against the
reconstructed influence vector for the 50 randomised networks. It can be seen that the reconstructed
influences tend to be bigger than those of the benchmark. However, the error metrics of the two
influence vectors have very similar values, except for the cosine similarity, which is lower for the
uniform influence vector (Table C.1).

Type RMSE MAE MedAE Cosine similarity

Influence vector 2×10−4 1×10−4 1×10−4 0.560

(9×10−7) (1×10−7) (5×10−8) (3×10−3)

Uniform influence vector 2×10−4 1×10−4 1×10−4 0.478

(4×10−7) (1×10−7) (4×10−8) (4×10−3)

Table C.1: Comparison metrics for the reconstructed and uniform influence vector for Ecuador. RMSE denotes
the root mean squared error, MAE the mean absolute error and MedAE the median absolute error. For each
metric, we show its mean value across the 50 randomised reconstructions. Below the mean value, the standard
deviation in parenthesis. We excluded the proxy node from the calculations.
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Figure C.12: “Uniform” influence on the x -axis and expected influence on the y-axis for the 50 randomised
networks. The “uniform” influence is calculated by assuming that each firm buys inputs from its suppliers in
the same proportion; this is the influence vector we use in our benchmark for aggregate fluctuations. The dashed
blue line marks the identity line.

C.4 Different numbers of unknown links

C.4.1 In- and out-degrees

Figure C.13 shows the number of suppliers (in-degree) against the number of customers (out-degree)
for different networks. The first panel on the top left-most corner shows the in- and out-degrees for the
full network, the second panel for the test network and the consecutive panels for test networks with
different numbers of unknown links. The last panel, at the bottom right-most corner, shows results
for the trimmed test network that we discuss throughout the paper, which has the same average
degree as FactSet. It can be noticed that in the full network firms tend to have more customers than
suppliers, something also observed by Bacilieri et al. (2023). In creating our test network, firms lose
more customers than suppliers. The maximum out-degree is 27,030 in the full network and decreases
almost 7 folds in the test network (96% of missing links), reaching a value of 4,081, while the maximum
in-degree is 2,543 in the full network and lowers to 781 in the test network (96% of missing links),
which is a 3-fold decrease.
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Figure C.13: Number of suppliers (in-degree) on x -axis and number of customers (out-degree) on y-axis for the
full network, the test network and for test networks with different numbers of unknown links. The blue dashed
line marks the identity line.
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C.4.2 Comparison of empirical and expected quantities

Microscale quantities. Figure C.14 shows the empirical values against the expected values for
the allocation coefficients (top panels), the technical coefficients (2nd row), and the weights (bottom
panels) for different numbers of unknown links. The allocation coefficients display a transition when
the number of unknown links rises from 90% to 96%, something that the other two quantities do not
experience. It also highlights the sampling process used for the deletion of links: as the number of
unknown links increases, higher and higher weights are eliminated. However, the shape of the joint
density does not vary, it is only re-scaled.

Figure C.14: 2D histograms for the empirical values on the x -axis and the expected values on the y-axis for
different numbers of unknown links (0%, 50%, 90% and 96%) for the allocation coefficients (Bij), the technical
coefficients (Tij) and the weights (Wij). We bin each axis into 100 log-spaced bins and count the number of
data points that fall in each square.

Higher-order quantities. Figure C.15 shows the empirical values against the expected values for
the output multipliers (left column) and the influence vector (right column) for different numbers
of unknown links (0%, 20%, 50%, 90% and 96%). Figure C.16 shows the empirical CCDF (black
dots) for the output multipliers (left) and the influence vector (right). It also shows the CCDF of the
reconstructed multipliers for different numbers of unknown links and for the 50 randomised networks.
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Figure C.15: 2D histograms for the empirical values on the x -axis and the expected values on the y-axis for
different numbers of unknown links (0%, 20%, 50%, 90% and 96%) for the output multipliers (left column) and
the influence vector (right column). We bin each axis into 50 log-spaced bins and count the number of data
points that fall in each square.
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Figure C.16: CCDF of the output multipliers (left) and influence vector (right) for different numbers of unknown
links (0% blue squares, 20% green diamonds, 50% yellow triangles and 96% red triangles) and the empirical
(black dots).
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